Peritoneal dialysis (PD) is a form of renal replacement therapy using the peritoneum as a dialysis membrane. PD solutions employed to remove nitrogen metabolites and excess plasma fluid, and to restore electrolyte and acid-base balance are being developed to minimize local and systemic inflammatory responses while maintaining peritoneal homeostasis and host defense. The effect of chronic action of PD solutions on the peritoneum results in its remodeling and, possibly, eventual loss of peritoneal ultrafiltration capacity. Factors most responsible for late complications and peritoneal remodeling include high glucose levels in PD solutions, and the presence and formation of glucose degradation products (GDP) and advanced glycation end - products (AGEs) in the peritoneal cavity. The aim of our study described in this dissertation was to test various PD solutions with different glucose content and GDP and, using AGEs receptor ligands, to define their systemic effects and identify PD solutions with highest biocompatibility. This part of the dissertation characterizes conventional glucose - based solutions, low - glucose and GDP load solutions as well as glucose polymer (icodextrin) - based PD solutions while determining the plasma and dialysate levels of soluble receptor for AGEs (s - RAGE) and its...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:450186 |
Date | January 2016 |
Creators | Procházková Pöpperlová, Anna |
Contributors | Opatrná, Sylvie, Krejčí, Karel, Šebeková, Katarína |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds