Return to search

Engineering the transport of signaling molecules in glycosaminoglycan-based hydrogels

Signaling molecules are critically important to regulate cellular processes. Therefore, their incorporation into engineered biomaterials is indispensable for the applications in tissue engineering and regenerative medicine. In particular, the functionalization of highly hydrated polymer networks, so-called hydrogels, with the signaling molecules, has been quite beneficial to provide multiple cell-instructive signals. Following this strategy, the incorporation of sulfated glycosaminoglycans (GAGs) into such polymer networks offers unprecedented options to control the administration of signaling molecules via electrostatic interactions. Moreover, mathematical models can be instrumental in designing materials to tune the transport and adjust the local concentration of the signaling molecules to precisely modulate cell fate decisions. Accordingly, this study aims to systematically investigate the impact of different binary poly(ethylene glycol)-glycosaminoglycan hydrogel networks on the transport of signaling molecules by developing and applying mathematical modeling in combination with experimental approaches. The gained knowledge was then applied to modulate the bioactivities of pro-angiogenic growths factor within the binary hydrogel and rationally design a new class of cytocompatible GAG-based materials for the controlled administration of pro-angiogenic growth factors.
Firstly, systematic studies on the mobility of signaling molecules within GAG-based polymer networks revealed differential effects of hydrogel network parameters such as mesh size, GAG content, and the sulfation pattern of the GAG building block on the transport of these signaling molecules.
Secondly, the effect of the GAG content of the hydrogel and the sulfation pattern of the GAG building block on the bioactivity of hydrogel administrated vascular endothelial growth factor (VEGF) have been analyzed. Since VEGF is a GAG-affine protein that plays a major role in angiogenesis, its ability to promote vascular morphogenesis has been investigated. The simulation and experimental results demonstrated the determining impact of the availability of free (unbound) VEGF as well as the presence of GAGs with a specific sulfation pattern within the polymer network on the formation of the endothelial capillary network within the hydrogel.
Finally, a rational design strategy has been applied to extend a GAG-hydrogel platform to allow for a far-reaching control of its cell instructive properties. The resulting materials are independently tunable over a broad range for their mechanical properties and GAG content. The GAG content of the hydrogel matrices, in particular, was shown to modulate the transport of pro-angiogenic growth factors most. Moreover, the hydrogel also supports endothelial vascular morphogenesis.
In conclusion, the in here followed approach of combining experimental results and mathematical modeling for predicting the transport of signaling molecules and the rational design concept for customizing GAG-based hydrogel networks provide the fundamentals to precisely modulate cell fate decisions within GAG-based biohybrid polymer networks rationalizing their application for tissue engineering and regenerative medicine

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:73316
Date14 January 2021
CreatorsLimasale, Yanuar Dwi Putra
ContributorsWerner, Carsten, Pompe, Tilo, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0142 seconds