This thesis examines the toxicity of the herbicide glyphosate (two formulations ¡V technical grade and Roundup Biactive RB) and the insecticide chlorpyrifos CPF to a model freshwater food chain of a producer and consumer. The importance of studying the toxicity of low (environmentally realistic) concentrations of pesticides to non-target organisms is highlighted. An extensive literature review on the toxicity of glyphosate and chlorpyrifos to aquatic organisms is provided. The requirements for the maintenance of algal (Chlorella vulgaris, Chlorella pyrenoidosa and Pseudokirchneriella subcapitata) and Daphnia carinata cultures are discussed. The effects of two formulations of the herbicide glyphosate (technical grade and Roundup Biactiveµ) and the insecticide chlorpyrifos on the growth of Chlorella pyrenoidosa and Pseudokirchneriella subcapitata were studied, and the EC50 values determined. Hormesis was observed when P. subcapitata was exposed to concentrations of Roundup equal to 7% and 4% of its EC50 respectively. When exposed to chlorpyrifos concentrations 0.3-5 Ýg/L, hormesis was observed for both algal species with a maximum at 0.06% of EC50. The effects of sublethal concentrations of chlorpyrifos on population characteristics of Daphnia carinata were investigated in multiple-generation toxicity testing using individual culture. Exposure to chlorpyrifos affected survival and fecundity of animals in the first generation. In the second generation the most affected endpoint was time to the first brood with an indication of hormesis. LC50 tests were then conducted using animals of the third generation from each of the exposures in individual tests. Results of testing the third generation showed a constant significant decline in LC50 in the order of control daphnids through to ¡¥0.1 LC50¡¦ pre-exposed daphnids. The same experimental protocol was used in testing of glyphosate (technical grade and Roundup Biactive). Glyphosate was tested in two different media: sea salt solution and M4 medium, while Roundup Biactive was tested in M4 medium. Results indicated that glyphosate and Roundup Biactive had low toxicity to Daphnia. Hormesis was evident in sea salt medium exposures in the first and second generations of daphnids with glyphosate. When exposed to glyphosate and Roundup Biactive in M4 medium animals showed no indication of hormesis. It is hypothesized that glyphosate may have compensated for the lack of microelements in the sea salt medium, and possible mechanisms discussed.The modifying effect of glyphosate on the toxicity of cadmium to Daphnia carinata was studied using the same experimental design. Low concentrations of Roundup Biactive reduced the toxicity of cadmium, and the performance of daphnia was enhanced in terms of animal size, survival, fecundity, and the rate of natural increase in both generations in the presence of glyphosate. However when the third generation was tested for their sensitivity to Cd in the 48-h LC50 experiments there was no difference between RB-free and RB-spiked treatments in pair wise comparisons, indicating that no adaptation mechanisms were involved in the enhancement. The implications of these observed effects for environmental freshwater food chains subjected to pesticide exposure are discussed and recommendations on modifying pesticide use are provided.
Identifer | oai:union.ndltd.org:ADTP/210343 |
Date | January 2007 |
Creators | Zalizniak, Liliana, liliana.zalizniak@rmit.edu.au |
Publisher | RMIT University. Applied Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Liliana Zalizniak |
Page generated in 0.0019 seconds