The commensal intestinal microbiota contributes substantially to intestinal development in the early neonatal period by mechanisms that are not yet elucidated but could contribute to novel strategies to improve intestinal health. A series of gnotobiotic experiments using isolator-reared caesarian section-derived piglets inoculated at 1 d of age with selected bacteria and euthanized at 14 or 15 days of age were performed to investigate intestinal morphology, inflammation and digestive function. In Experiment 1, piglets were maintained germfree (GF), mono-associated with Escherichia coli (EC), mono-associated with Lactobacillus fermentum (LF) or conventionalized with sow feces (CV). Increased (P<0.05) gene expression of Fas ligand (FasL) and tumor necrosis factor (TNF?) in EC and CV as compared to LF and GF pigs coincided with increased apoptotic and proliferative activity. Toll-like receptors (TLR) 2, 4 and 9 were differentially regulated (P<0.05) by colonizing species. In Experiment 2 using the same animals as Exp. 1, increased turnover of brush border enzymes was indicated by reduced (P<0.05) specific activity of aminopeptidase N (APN) and lactase (LPH) and increased expression of APN in CV and EC as compared to GF and LF pigs. Reduced enzyme activity to gene expression ratio corresponded with an in vitro assay of microbial inactivation of APN. In Experiment 3, probiotic Lactobacillus sp., L3777, and Bifidobacteria sp., B5445, did not induce expression of inflammatory cytokines in mono-association but di-association with E. coli increased (P<0.05) inflammatory and anti-inflammatory mediators and resulted in a high rate of sepsis (50%) relative to E. coli mono-association. Induced expression of inflammatory cytokines by commensal bacteria through TLR and other means, appear to play a substantial role in microbially-induced enterocyte turnover. Enterocyte immaturity did not account for reduced enzyme activity associated with inflammation as increased expression of APN in response to microbial colonization was observed, suggesting a host response pathway enabling effective competition with the intestinal microbiota for available peptide nutrients. Probiotic bacteria were relatively benign in mono-association but may have facilitated increased translocation of <i>E. coli</i> in di-association. Gnotobiotic animal models are essential to demonstrate outcomes of host response characterized by communication among numerous cell types, although are of significant technical difficulty.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-08282007-004432 |
Date | 30 August 2007 |
Creators | Willing, Benjamin Peter |
Contributors | Van Kessel, Andrew G., Simko, Elemir, Laarveld, Bernard, Buchanan, Fiona C., Zijlstra, Ruurd T. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-08282007-004432/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0022 seconds