The meet up between data, processes and structural knowledge in modeling complex enterprise systems is a challenging task that has led to the study of combining formalisms from knowledge representation, database theory, and process management. Moreover, to ensure system correctness, formal verification also comes into play as a promising approach that offers well-established techniques. In line with this, significant results have been obtained within the research on data-aware business processes, which studies the marriage between static and dynamic aspects of a system within a unified framework. However, several limitations are still present. Various formalisms for data-aware processes that have been studied typically use a simple mechanism for specifying the system dynamics. The majority of works also assume a rather simple treatment of inconsistency (i.e., reject inconsistent system states). Many researches in this area that consider structural domain knowledge typically also assume that such knowledge remains fixed along the system evolution (context-independent), and this might be too restrictive. Moreover, the information model of data-aware processes sometimes relies on relatively simple structures. This situation might cause an abstraction gap between the high-level conceptual view that business stakeholders have, and the low-level representation of information. When it comes to verification, taking into account all of the aspects above makes the problem more challenging.
In this thesis, we investigate the verification of data-aware processes in the presence of ontologies while at the same time addressing all limitations above. Specifically, we provide the following contributions: (1) We propose a formal framework called Golog-KABs (GKABs), by leveraging on the state of the art formalisms for data-aware processes equipped with ontologies. GKABs enable us to specify semantically-rich data-aware business processes, where the system dynamics are specified using a high-level action language inspired by the Golog programming language. (2) We propose a parametric execution semantics for GKABs that is able to elegantly accommodate a plethora of inconsistency-aware semantics based on the well-known notion of repair, and this leads us to consider several variants of inconsistency-aware GKABs. (3) We enhance GKABs towards context-sensitive GKABs that take into account the contextual information during the system evolution. (4) We marry these two settings and introduce inconsistency-aware context-sensitive GKABs. (5) We introduce the so-called Alternating-GKABs that allow for a more fine-grained analysis over the evolution of inconsistency-aware context-sensitive systems. (6) In addition to GKABs, we introduce a novel framework called Semantically-Enhanced Data-Aware Processes (SEDAPs) that, by utilizing ontologies, enable us to have a high-level conceptual view over the evolution of the underlying system. We provide not only theoretical results, but have also implemented this concept of SEDAPs.
We also provide numerous reductions for the verification of sophisticated first-order temporal properties over all of the settings above, and show that verification can be addressed using existing techniques developed for Data-Centric Dynamic Systems (which is a well-established data-aware processes framework), under suitable boundedness assumptions for the number of objects freshly introduced in the system while it evolves. Notably, all proposed GKAB extensions have no negative impact on computational complexity.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-213372 |
Date | 14 November 2016 |
Creators | Santoso, Ario |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Diego Calvanese, Dr. Marco Montali, Prof. Dr.-Ing. Franz Baader, Prof. Dr.-Ing. Franz Baader, Prof. Yves Lespérance, Prof. Sebastian Sardiña |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0025 seconds