We aim at expanding the horizon of existing research on cyberattacks against the time-syncrhonized devices such as PMUs and PDCs, along with corresponding countermeasures. We develop a PMU-PDC cybersecurity testbed at Virginia Tech Power and Energy Center (PEC) lab. The testbed is able to simulate real-world GPS-spoofing attack (GSA) and false data injection attack (FDIA) scenarios. Moreover, the testbed can incorporates cyberattack detection algorithm in pseudo real-time. After that, we propose three stealthy attack scenarios that exploit the vulnerabilities of time-synchronization for both PMU and PDC. The next part of this dissertation is the enhancement of Hankel-matrix based bad data detection model. The existing general Hankel-matrix based bad data detection model provide satisfactory performance. However, it fails in differentiating GPS-spoofing attack from FDIA. We propose an enhanced phase angle Hankel-matrix model that can conclusively identify GPS-spoofing attack. Furthermore, we reduce the computational burden for Hankel-matrix based bad data and cyberattack detection models. Finally, we verify the effectiveness of our enhanced Hankel-matrix model for proposed stealthy attack scenarios. / Doctor of Philosophy / Modern power systems incorporate numerous smart metering devices and communication channels to provide better resiliency against hazardous situations. One such metering device is Phasor Measurement Device (PMU), what provides GPS time-synchronized measurements to the system operator. The time-synchronized measurements are critical in ensuring the cyber and physical security of grids. However, like other smart devices, PMUs are susceptible to conventional cyberattacks. In addition to conventional cyberattacks, PMUs are also vulnerable to attacks against its time-synchronization. In this work, we dig deep into the realm of cyberattacks against time-synchronization of PMUs. We propose novel stealthy attacks against PMU time synchronization. Furthermore, we enhance existing attack detection model to conclusively identify such stealthy attacks and implemented the model in cybersecurity testbed that we developed at Virginia Tech.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/120578 |
Date | 02 July 2024 |
Creators | Khan, Imtiaj |
Contributors | Electrical Engineering, Centeno, Virgilio A., Zhang, Yuhao, De La Reelopez, Jaime, Liu, Chen-Ching, Viswanath, Bimal |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | Creative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0019 seconds