The Maximum Likelihood Degree (ML degree) of a statistical model is the number of complex critical points of the likelihood function. In this thesis we study this on Colored Gaussian Graphical Models, classifying the ML degree of colored graphs of order up to three. We do this by calculating the rational function degree of the gradient of the log- likelihood. Moreover we find that coloring a graph can lower the ML degree. Finally we calculate solutions to the homaloidal partial differential equation developed by Améndola et al. The code developed for these calculations can be used on graphs of higher orders. / Maximum likelihood-graden (ML-graden) för en statistisk modell är antalet komplexa kritiska punkter för likelihoodfunktionen. I denna avhandling studerar vi detta på färgade Gaussiska grafiska modeller och klassificerar ML-graden för färgade grafer av ordning upp till tre. Detta görs genom att beräkna den rationella funktionsgraden för gradienten av logaritmen av likelihoodfunktionen. Dessutom finner vi att ML-graden av en graf kan minskas genom att färgläggas. Slutligen beräknar vi lösningar till den homaloidala partiella differentialekvationen utvecklad av Améndola et al. Den kod som utvecklats för dessa beräkningar kan användas på grafer av högre ordning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-345203 |
Date | January 2023 |
Creators | Kuhlin, Jacob |
Publisher | KTH, Matematik (Avd.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023:468 |
Page generated in 0.0019 seconds