Bacteria adhere despite severe mechanical perturbations. In Gram-positive bacteria, this adhesion is dependent upon a set of extracellular proteins, most notably pili, that have a unique abundance of internal disulfide, isopeptide, and thioester bonds. How these cell adhesion proteins manage to withstand such mechanical assaults, and what role these internal covalent bonds play to that end, remain open questions. Herein, we apply single-molecule force spectroscopy to delve into the mechanical behavior of three Gram-positive pilus proteins. We find that structural components of the Actinomyces oris and Corynebacterium diphtheriae pili have isopeptide-delimited extensions at extreme mechanical forces. This behavior enables efficient energy dissipation under high mechanical loads. Meanwhile, the pilus tip adhesin of Streptococcus pyogenes can covalently bind to targets via its internal thioester bond. We find that reactions with this internal thioester bond are reversible, and that both the nucleophilic bond cleavage and its spontaneous reformation are negatively force-dependent, inhibited at forces above ~30 pN and above ~7 pN, respectively. Based on these observations, we propose a model of shear-enhanced covalent adhesion for Gram-positive bacteria. Finally, we move from single-molecule characterization to application as we explore the potential of a peptide competitors to modulate the folding and function of bacterial virulence factors.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8PZ6SQ3 |
Date | January 2018 |
Creators | Echelman, Daniel Jay |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0019 seconds