3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase is the enzyme responsible for catalyzing the first reaction in the biosynthesis of KDO. KDO is an essential component in the cell wall of Gram-negative bacteria and plants. This compound is not present in mammals; therefore the enzymes responsible for its biosynthesis are potential targets for the development of new antibiotic agents. KDO8P synthase catalyzes the condensation reaction between phosphoenol pyruvate (PEP) and D-arabinose 5-phosphate (A5P) to form KDO8P. Two types of KDO8P synthase have been identified; a metal-dependent type and a non metal-dependent type. KDO8P synthase from the organism Chlorobium tepidum (Cte) has been partially purified and partially characterized. In line with predictions based on sequence alone, the activity of this enzyme is dependent on the presence of a divalent metal ion and is sensitive to the presence of the metal chelating agent EDTA. Cte KDO8P synthase was found to have the highest activity in the presence of Mn2+ or Cd2+. KDO8P synthase from the organism Acidithiobacillus ferrooxidans (Afe) has also been cloned, purified and biochemically characterized. Afe KDO8P synthase was also found to be a metallo enzyme and the catalytic activity is highest in the presence of Mn2+ or Co2+. Afe KDO8P synthase was found to exist as a tetramer in solution and is most active within the pH range of 6.8 to 7.5 and within a temperature range of 35 ºC to 40 ºC. Sequence analysis suggests that this enzyme has characteristics conserved throughout the metallo and the non-metallo KDO8P synthases and is closely related to the metal-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthases. The role of several active-site residues of Afe KDO8P synthase has been investigated. A C21N mutant of Afe KDO8P synthase was found to retain 0.5% of wildtype activity and did not require a divalent metal ion for catalytic activity. This suggests that the metallo and non-metallo KDO8P synthases have similar catalytic mechanisms.
Identifer | oai:union.ndltd.org:ADTP/244399 |
Date | January 2007 |
Creators | Yeoman, Jeffrey Aaron |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Page generated in 0.0017 seconds