This thesis presents work done on compressed graph representations via hyperedge replacement grammars. It comprises two main parts. Firstly the RePair compression scheme, known for strings and trees, is generalized to graphs using graph grammars. Given an object, the scheme produces a small context-free grammar generating the object (called a “straight-line grammar”). The theoretical foundations of this generalization are presented, followed by a description of a prototype implementation. This implementation is then evaluated on real-world and synthetic graphs. The experiments show that several graphs can be compressed stronger by the new method, than by current state-of-the-art approaches. The second part considers algorithmic questions of straight-line graph grammars. Two algorithms are presented to traverse the graph represented by such a grammar. Both algorithms have advantages and disadvantages: the first one works with any grammar but its runtime per traversal step is dependent on the input grammar. The second algorithm only needs constant time per traversal step, but works for a restricted class of grammars and requires quadratic preprocessing time and space. Finally speed-up algorithms are considered. These are algorithms that can decide specific problems in time depending only on the size of the compressed representation, and might thus be faster than a traditional algorithm would on the decompressed structure. The idea of such algorithms is to reuse computation already done for the rules of the grammar. The possible speed-ups achieved this way is proportional to the compression ratio of the grammar. The main results here are a method to answer “regular path queries”, and to decide whether two grammars generate isomorphic trees.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743796 |
Date | January 2018 |
Creators | Peternek, Fabian Hans Adolf |
Contributors | Maneth, Sebastian ; Buneman, Peter |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/31094 |
Page generated in 0.0016 seconds