Return to search

Graphages à type d'isomorphisme prescrit

On considère R une relation d'équivalence borélienne standard de type I I1 sur un espace de probabilités (X, µ). On étudie une certaine propriété d'homogénéité pour un graphage fixé de la relation R : on suppose que les feuilles du graphage sont toutes isomorphes à un certain graphe transitif (connexe, infini, localement fini) Γ. Que peut-on dire sur la relation ? Dans ce cas, en considérant une action "à la Mackey", on montre qu'il existe (Z ,η) un revêtement standard probabilisé de (X, µ), une action libre (qui préserve η) sur Z du groupe G (localement compact, à base dénombrable d'ouverts) des automorphismes du graphe et un isomorphisme stable des groupoïdes mesurés associés. On fait le lien entre les propriétés du groupe G et celles de la relation de départ ; en particulier la propriété (T), (H) et la moyennabilité "passent" du graphe à la relation et réciproquement. On déduit aussi de la construction quelques couplages d'équivalence mesurée (ou plus généralement des "randembeddings") entre certains sous-groupes des automorphismes de Γ et tout groupe qui contient orbitalement la relation R. Dans un deuxième chapitre, on aborde le cas particulier de la propriété (T) relative pour les paires de groupes (ΓxZ^2, Z^2), où Γ est un sous-groupe non moyennable de SL(2,Z). Cette propriété a d'abord été prouvée par Marc Burger, puis "re-démontrée" plus "visuellement" quelques années plus tard dans le cas de SL(2,Z)xZ^2 par Y. Shalom, en utilisant des découpages du plan. On reprend cette technique dans le cas général du théorème de Burger afin d'obtenir par un algorithme des constantes de Kazhdan explicites pour toute paire (ΓxZ^2, Z^2).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00751265
Date24 September 2012
CreatorsMercier, Pierre-Adelin
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds