Over the last few years, commodity Graphics Processing Units (GPUs) have evolved from fixed graphics pipeline processors into more flexible and powerful data-parallel processors. These stream processors are capable of sustaining computation rates of greater than ten times that of a single-core CPU. GPUs are inexpensive and are becoming ubiquitous in a wide variety of computer architectures including desktop and laptop computers, PDAs and cell phones. This research works investigates possible ways to use modern GPUs for real-time computer vision and pattern classification tasks. Special attention is paid to algorithms, where the power of the CPU is a limiting factor. This is in particular the case for real-time tracking algorithms on video streams, where many candidate regions must be evaluated at once to allow stable tracking of features. They impose a high computational burdon on sequential processing units such as the CPU. The proposed implementation presented in this thesis is considering standard PC platforms rather than expensive special dedicated hardware to allow a broad variety of users to benefit from powerful computer vision applications. In particular, this thesis includes following topics: 1. First, we present a framework for computer vision on the GPU, which is used as a foundation for the implementation of computer vision methods. 2. We continue with the discussion of GPU-based implementation of Kernel Methods, including Support Vector Machines and Kernel PCA. 3. Finally, we propose GPU-accelerated implementations of two tracking algorithms. The first algorithm uses geometric templates in a gradient vector field. The second algorithm is a color-based approach in a particle filter framework. Both are able to track objects in a video stream. This thesis concludes with a final discussion of the presented methods and will propose directions for further research work. It will also briefly present the features of the next generation of GPUs.
Identifer | oai:union.ndltd.org:ADTP/265455 |
Date | January 2007 |
Creators | Ohmer, Julius Fabian |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Julius Fabian Ohmer |
Page generated in 0.0015 seconds