The topic of this thesis is the study of nitrogen functionalities in nitrogen-doped reduced graphene oxide using Raman spectroscopy. Specifically, the project set out to investigate if the Raman active nitrogen-related vibrational modes of graphene can be identified via isotope labelling. Previous studies have used Raman spectroscopy to characterise nitrogen doped graphene, but none has employed the method of isotope labelling to do so. The study was conducted by producing undoped, nitrogen-doped and nitrogen-15-doped reduced graphene oxide and comparing the differences in the first-order Raman spectrum of the samples. Results of this study are inconclusive. However, some indications linking the I band to nitrogen functionalities are found. Also, a hypothetical Raman band denoted I* possibly related to \spt{3} hybridised carbon is introduced in the same spectral area as I. This indication of a separation of the I band into two bands, each dependent on one of these factors could bring clarity to this poorly understood spectral area. As the results of this study are highly speculative, further research is needed to confirm them and the work presented here serves as a preliminary investigation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-116699 |
Date | January 2016 |
Creators | Dahlberg, Tobias |
Publisher | Umeå universitet, Institutionen för fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds