Return to search

Non-Radially Pulsating Stars as Microlensing Sources

We study the microlensing of non-radially pulsating (NRP) stars. Pulsations are formulated for stellar radius and temperature using spherical harmonic functions with different values of l, m. The characteristics of the microlensing light curves from NRP stars are investigated in relation to different pulsation modes. For the microlensing of NRP stars, the light curve is not a simple multiplication of the magnification curve and the intrinsic luminosity curve of the source star, unless the effect of finite source size can be ignored. Three main conclusions can be drawn from the simulated light curves. First, for modes with m a 0 and when the viewing inclination is more nearly pole-on, the stellar luminosity towards the observer changes little with pulsation phase. In this case, high-magnification microlensing events are chromatic and can reveal the variability of these source stars. Secondly, some combinations of pulsation modes produce nearly degenerate luminosity curves (e.g. (l, m) = (3, 0), (5, 0)). The resulting microlensing light curves are also degenerate, unless the lens crosses the projected source. Finally, for modes involving m = 1, the stellar brightness centre does not coincide with the coordinate centre, and the projected source brightness centre moves in the sky with pulsation phase. As a result of this time-dependent displacement in the brightness centroid, the time of the magnification peak coincides with the closest approach of the lens to the brightness centre as opposed to the source coordinate centre. Binary microlensing of NRP stars and in caustic-crossing features are chromatic.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-10551
Date01 October 2020
CreatorsSajadian, Sedighe, Ignace, Richard
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0021 seconds