Return to search

Single-Step Biofriendly Synthesis of Surface Modifiable, Near-Spherical Gold Nanoparticles for Applications in Biological Detection and Catalysis

There is an increased interest in understanding the toxicity and rational design of gold nanoparticles (GNPs) for biomedical applications in recent years. Such efforts warrant reliable, viable, and biofriendly synthetic methodology for GNPs with homogeneous sizes and shapes, particularly sizes above 30 nm, which is currently challenging. In the present study, an environmentally benign, biofriendly, singlestep/ single-phase synthetic method using dextrose as a reducing and capping agent in a buffered aqueous solution at moderate temperature is introduced. The resulting GNPs are near-spherical, stable, catalytically active, place exchangeable, and water-soluble within the size range of 10-120 nm. The added advantage of the biologically friendly reaction medium employed in this new synthetic approach provides a method for the direct embedment/integration of GNPs into biological systems such as the E. coli bacterium without additional capping ligand or surface modification processes.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2096
Date01 August 2011
CreatorsBadwaik, Vivek D.
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0074 seconds