The aim of this work is to study rings of algebroid Gorenstein rings. We explore more deeply the symmetry that exists among the sets of values of a fractional ideal and that of its dual and also to express the codimension of a fractional ideal in terms of the maximal points of the value set of the ideal. We apply the formulas we obtained to express the Tjurina number of a complete intersection curve in terms of invariants of its components and the maximal points of the set of values of the Kähler differentials on the curve. / O objetivo desse trabalho é o estudo dos anéis de curvas algebróides de Gorenstein. Expolramos mais aprofundadamente a simetria que existe entre os conjuntos de valores de um ideal fracionário e de seu dual e também expressar a codimensão de um ideal fracionário em função dos pontos maximais de seu conjunto de valores. Aplicamos as fórmulas obtidas para relacionar o número de Tjurina de uma curva de interseção completa com certos invariantes de suas componentes e dos pontos maximais do conjunto de valores das diferenciais de Kähler sobre a curva.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18102018-144911 |
Date | 02 May 2018 |
Creators | Edison Marcavillaca Niño de Guzmán |
Contributors | Abramo Hefez, Marcelo José Saia, Marcelo Escudeiro Hernandes, Renato Vidal da Silva Martins, Fernando Eduardo Torres Orihuela, Marcelo José Saia |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds