Return to search

Set of Values of Fractional Ideals of Rings of Algebroid Curves / Conjunto de valores de ideais fracionários de anéis de curvas algebroides

The aim of this work is to study rings of algebroid Gorenstein rings. We explore more deeply the symmetry that exists among the sets of values of a fractional ideal and that of its dual and also to express the codimension of a fractional ideal in terms of the maximal points of the value set of the ideal. We apply the formulas we obtained to express the Tjurina number of a complete intersection curve in terms of invariants of its components and the maximal points of the set of values of the Kähler differentials on the curve. / O objetivo desse trabalho é o estudo dos anéis de curvas algebróides de Gorenstein. Expolramos mais aprofundadamente a simetria que existe entre os conjuntos de valores de um ideal fracionário e de seu dual e também expressar a codimensão de um ideal fracionário em função dos pontos maximais de seu conjunto de valores. Aplicamos as fórmulas obtidas para relacionar o número de Tjurina de uma curva de interseção completa com certos invariantes de suas componentes e dos pontos maximais do conjunto de valores das diferenciais de Kähler sobre a curva.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18102018-144911
Date02 May 2018
CreatorsEdison Marcavillaca Niño de Guzmán
ContributorsAbramo Hefez, Marcelo José Saia, Marcelo Escudeiro Hernandes, Renato Vidal da Silva Martins, Fernando Eduardo Torres Orihuela, Marcelo José Saia
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds