Return to search

Einfluss variierender Substitutionsgrade amphiphiler Polysaccharide auf ihre physikochemischen Eigenschaften und deren potentielle Anwendung bei der Sticky-Kontrolle

Biological degradable polymers on a basis of renewable raw materials, such as polysaccharides, represent promising alternatives to synthetic polymers used as flocculant or stabilizing agents. Polysaccharides derived from potato starch and chitosan have been modified with benzyl- and the first one with additionally cationic hydroxypropyl-trimethylammonium groups of different degrees of substitution (DS).

The aim of this work was to characterize the solution properties of these novel amphiphilic polysaccharides concerning the impact of their DS on charge density, particle size, dynamic surface tension and viscosity behaviour. The work is further focused on investigations on flocculation properties of these amphiphilic polyelectrolytes in dispersions of kaolin and silica to identify the interplay between charge density and hydrophobicity.

Flocculation efficiency has been evaluated via joint analysis of charge density measurements (using polyelectrolyte titration), turbidity and TOC measurements, as well as dynamic surface tension measurements applying the drop profile analysis. Particle sizes and particle size distributions have been determined by dynamic light scattering and laser diffraction methods. In addition, these amphiphilic starch derivatives have been used to remove substances which impact negatively the paper production process when using recycled paper, so called stickies. Model suspensions have been studied using a multitude of different measurement techniques with the aim to predict a “sticky potential” and to reduce containing dissolved and colloidal substances such as micro stickies.

The surface activity and viscometric behaviour have been studied of solely cationic and moderately and highly substituted, amphiphilic polysaccharides in salt-free and 0.05 M NaCl aqueous solution. For the first time dynamic surface tension measurement results have been correlated with particle sizes and apparent charge density.

Rheological investigation of large concentration ranges (0.01–20 g/L) was used to discuss Huggins plots and typical polyelectrolyte behaviour for all polysaccharide derivatives could be found. Overlap concentration and, in dilute aqueous solution, intrinsic viscosity could be determined. For polysaccharide solution in dilute regime semi-empirical equations of Rao and Wolf have been applied, making it possible to get insights to polyelectrolyte conformation in dependence on the DS of both substituents. It is shown that for intrinsic viscosity a change of the impact of both substituents takes place when having derivatives with enhanced hydrophobicity. Data evaluation via the ratio of both DS values had been successfully utilized and thus, the applied method has been identified as being a promising tool to compare a multitude of starch derivatives with substituents of different polarity in various degrees of substitution to get tendencies regarding overall hydrophobicity.

Moderate hydrophobic substitution was found to lead to a decrease of the efficient flocculant dose and to an increase of the flocculation window width. Amphiphilic starch derivatives with high DS of hydrophobic moieties showing strong hydrophobic association are effective only at significantly higher doses, but in a broader concentration range compared to cationic starch of the same DS. Joint analysis of adsorption isotherms and flocculation test data has revealed, that the surface coverage required to induce phase separation ranges between 10 and 25 % and is minimal for amphiphilic starch derivatives. This gave the evidence of the complex mechanism of flocculation via combination of electrostatic “charge patch” interactions and bridging.

Concerning sticky reduction experiments by systematically studying the interactions between the novel amphiphilic starch derivatives and the model suspension it turned out, that dynamic surface tension is a very suitable property to characterize the surface active compounds in the model suspension giving additional information about the sticky potential of waste water, e.g. white water, being a new and sensitive method to describe the parameter “hydrophobicity”. Moderate cationic and hydrophobic starch derivatives have been proved to be the most effective ones for sticky removal.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28336
Date22 July 2014
CreatorsGenest, Sabine
ContributorsVoit, Brigitte, Heinze, Thomas, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds