Return to search

Modelling the expected participation of future smart households in demand side management, within published energy scenarios

The 2050 national energy scenarios as planned by the DECC, academia and industry specify a range of different decarbonised supply side technologies combined with the electrification of transportation and heating. Little attention is paid to the household demand side; indeed within many scenarios a high degree of domestic Demand Side Management (DSM) is implicit if the National Grid is to maintain supply-demand balance. A top-down, bottom-up hybrid model named Shed-able Household Energy Demand (SHED) has been developed and the results of which presented within this thesis. SHED models six published national energy scenarios, including three from the Department for Energy and Climate Change, in order to provide a broad coverage of the possible energy scenario landscape. The objective of which is to quantify the required changes in current household energy demand patterns via DSM, as are implicit under these highly electricity dominated scenarios, in order to maintain electrical supply-demand balance at the national level. The frequency and magnitude of these required household DSM responses is quantified. SHED performs this by modelling eleven years of supply-demand dynamics on the hourly time step, based on the assumptions of the published energy scenarios as well as weather data from around 150 weather stations around the UK and National Grid historic electricity demand data. The bottom-up component of SHED is populated by 1,000 households hourly gas and electricity demand data from a recently released dataset from a smart metering trial in Ireland. This aggregate pool of households enables national domestic DSM dynamics to be disaggregated to the aggregate household level. Using household classifications developed by the Office for National Statistics three typical ' households are identified within the aggregate pool and algorithms developed to investigate the possible required responses from these three households. SHED is the first model of its kind to connect national energy scenarios to the implications these scenarios may have on households consumption of energy at a high temporal resolution. The analysis of the top-down scenario modelling shows significant periods where electrical demand exceeds supply within all scenarios, within many scenarios instances exist where the deficit is unserviceable due to lack of sufficient spare capacity either side of the deficit period. Considering the level of participation required within the modelled scenarios in order to balance the electricity system and the current lack in understanding of smart metering and Time-Of-Use (TOU) tariffs within households, it would seem there is a disconnect between the electricity system being planned, the role this system expects of households and the role households are willing to play.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:631644
Date January 2014
CreatorsQuiggin, Daniel
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/16220

Page generated in 0.0015 seconds