Chapter 1 examines alternative specifications of futures-based forecasting models to improve upon existing approaches constrained by restrictive assumptions and limited information sets. We replace historical averages with rolling regressions and incorporate current market information through the deviation of the current basis from its historical average. To address potential non-stationarity and structural changes in the cash-futures price relationship, we employ a five-year rolling estimation window. Our findings indicate that the rolling regression approach yields significant improvements in both accuracy and information content of cotton season-average price forecasts, primarily at short forecast horizons.
Chapter 2 addresses challenges in vulnerability assessment for semi-arid regions dependent on rainfed agriculture, where extreme weather events pose significant risks to household livelihoods. Despite advancements in remotely sensed technology, accurately estimating weather variability's impact on household livelihoods remains challenging. This study evaluates the effects of weather anomaly measures, spatial resolutions (i.e., geographic level at which the weather anomaly measures are evaluated), and household characteristics on household likelihood of falling into poverty (i.e., vulnerability) estimates. Combining household consumption data for Niger with remotely sensed agro-environmental measures, we find significant variations in vulnerability estimates based on the use of various weather condition measures (3 percentage points, equivalent to 600,000 households), spatial resolutions (8 percentage points, totalling 1.6 million households), and household characteristics (10 percentage points, equivalent to approximately 2 million households).
Chapter 3 evaluates student learning outcomes from student involvement in hands-on learning settings, specifically focusing on student-managed investment funds. To assess the changes in the obtained technical and practical skills, we combine knowledge tests with grading rubrics. As part of practical skills, we consider commodity market analysis, critical thinking, informed decision-making, and insightful interpretation of market analysis results. We evaluate our students' understanding of commodity markets and their practical trading skills before and after joining the student-managed investment fund program. We find significant improvements in student learning outcomes, with students showing an average increase of 28% in disciplinary or technical knowledge and 38% in practical skills. Our findings highlight the importance of hands-on learning experiences to bridge the gap between theoretical knowledge and real-world application and in developing the well-rounded skill set demanded by the job market. / Doctor of Philosophy / Chapter 1 explores several alternative specifications of futures-based forecasting models to improve existing approaches constrained by restrictive assumptions and limited information sets. Accurate prediction of cotton prices is vital for the agricultural sector, significantly impacting decisions made by farmers, traders, and policymakers. Reliable forecasts enable farmers to optimize their planting and harvesting strategies, allow traders to manage risk more effectively, and guide policymakers in developing informed agricultural policies. However, the inherent volatility of commodity markets, particularly cotton, presents substantial challenges to price forecasting. Traditional forecasting methods often struggle to capture rapid market changes, resulting in less reliable predictions. Our proposed more responsive forecasting approaches lead to a significant gain in accuracy and information content of cotton price projection and provide valuable insights that can enhance decision-making processes throughout the cotton industry.
Chapter 2 explores how extreme weather events, like droughts, affect households in semi-arid regions where people's livelihood largely depends on rain-fed farming. While satellite technology helps monitor environmental changes, it is still challenging to accurately measure how weather changes impact people's lives. Our study focuses on Niger and uses household survey data to assess how various factors influence our understanding of the risk of falling into poverty (i.e., household vulnerability) due to adverse weather events. We found that the methods we use to measure weather conditions, the geographic scale at which we measure them, and the household information we include can all significantly alter our estimates of how many households are at risk of becoming poor. For example, different methods for measuring weather impacts can change estimates of household vulnerability by about 3 percentage points, affecting around 600,000 households. The geographic level (administrative unit level or within a 20 km buffer around an enumeration area) at which we assess weather conditions can shift our estimates by 8 percentage points, which is equivalent to 1.6 million households. Additionally, considering different household characteristics can change our estimates by 10 percentage points, impacting around 2 million households. Our findings are crucial for policymakers who aim to better understand and address the effects of weather on vulnerable communities.
Chapter 3 evaluates student learning outcomes from participation in the Commodity Investing by Students program, a student-managed investment fund within the Department of Agricultural and Applied Economics at Virginia Tech. Our study focuses on students from the 2022/23 and 2023/24 academic years, assessing both their technical knowledge and practical skills gained during a year-long involvement in the program. To measure changes in technical skills, we administered knowledge-testing quizzes before and after the training class. Practical skills, such as commodity market analysis, critical thinking, informed decision-making, and insightful interpretation of market analysis results, we evaluated through trading projects submitted during and at the end of the training class. We grade these student submissions using a specific practical skill evaluation rubric. We find significant improvements in student learning outcomes. On average, students demonstrated a 28% increase in disciplinary knowledge and a 38% improvement in practical skills. Our findings highlight the effectiveness of hands-on learning in improving both technical knowledge and practical skills that are highly valued in today's job market.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/120985 |
Date | 21 August 2024 |
Creators | Poghosyan, Armine |
Contributors | Economics, Benami, Elinor, Isengildina Massa, Olga, Stewart, Shamar L., Mills, Bradford F. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0054 seconds