In all common hydrostatic pumps, compressibility affects the commutation phases of the displacing chambers, as they switch their connection from/to the inlet to/from the outlet port, leading to pressure peaks, localized cavitation, additional port flow fluctuations and volumetric efficiency reduction. In common pumps, these effects are reduced by proper grooves that realizes gradual port area variation in proximity of these transition regions. This paper presents a method to automatically find the optimal designs of these grooves, taking as reference the case of external gear pumps. The proposed procedure does not assume a specific geometric morphology for the grooves, and it determines the best feasible designs through a multi-objective optimization procedure. A commercial gear pump is used to experimentally demonstrate the potentials of the proposed method, for a particular case aimed at reducing delivery flow oscillations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-199832 |
Date | 28 April 2016 |
Creators | Gulati, Sidhant, Vacca, Andrea, Rigosi, Manuel |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V.,, Technische Universität Dresden, Fakultät Maschinenwesen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject |
Format | application/pdf |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 1, pp. 453-464 |
Page generated in 0.0016 seconds