Earthquake-induced slope instability is one of the major sources of earthquake hazards in near fault regions. Simplified tools, such as Newmark&rsquo / s Sliding Block (NSB) Analysis are widely used to represent the stability of a slope under earthquake shaking. The outcome of this analogy is the slope displacement where larger displacement values indicate higher seismic slope instability risk. Recent studies in the literature propose empirical models between the slope displacement and single or multiple ground motion intensity measures such as peak ground acceleration or Arias intensity. These correlations are based on the analysis of large datasets from global ground motion recording database (PEER NGA-W1 Database). Ground motions from earthquakes occurred in Turkey are poorly represented in NGA-W1 database since corrected and processed data from Turkey was not available until recently. The objective of this study is to evaluate the compatibility of available NSB displacement prediction models for the Probabilistic Seismic Hazard Assessment (PSHA) applications in Turkey using a comprehensive dataset of ground motions recorded during earthquakes occurred in Turkey. Then the application of selected NSB displacement prediction model in a vector-valued PSHA framework is demonstrated with the explanations of seismic source characterization, ground motion prediction models and ground motion intensity measure correlation coefficients. The results of the study is presented in terms of hazard curves and a comparison is made with a case history in Asarsuyu Region where seismically induced landslides (Bakacak Landslides) had taken place during 1999 Dü / zce Earthquake.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12615453/index.pdf |
Date | 01 January 2013 |
Creators | Balal, Onur |
Contributors | Gulerce, Zeynep |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | Access forbidden for 1 year |
Page generated in 0.0025 seconds