A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CÂșO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed advantages of Si/Ge over C analogs.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc3591 |
Date | 05 1900 |
Creators | Yu, Liwen |
Contributors | Schwartz, Martin, Marshall, Paul, 1960-, Cundari, Thomas R., Omary, Mohammad, Poirier, Bill |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Copyright, Yu, Liwen, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.005 seconds