Return to search

Regulation of neuronal diversity in the mammalian nervous system

To acquire its characteristic structural and functional complexity, the mammalian nervous system must undergo several critical developmental processes. One such process requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown in this thesis that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the murine olfactory epithelium. Disruption of Runx1 function in vivo does not result in a change in the quantity of progenitors but leads to a decrease in precursor number and an increase in differentiated ORNs. These effects result in premature and ectopic ORN differentiation. Further, exogenous Runx1 expression in cultured olfactory neural progenitors causes an expansion of the mitotic cell population. In agreement with these findings, exogenous Runx1 expression also promotes cortical neural progenitor cell proliferation without inhibiting neuronal differentiation. These effects appear to involve transcriptional repression mechanisms. Consistent with this possibility, Runx1 represses transcription driven by the promoter of the cell cycle inhibitor p21Cip1 in cortical progenitors. Taken together, these findings suggest a previously unrecognized role for Runx1 in coordinating the proliferation and neuronal differentiation of selected populations of neural progenitors/precursors. / Another significant step in the development of the mammalian nervous system is the acquisition of distinctive neuronal traits. This thesis also shows that Runx1 is expressed in selected populations of postmitotic neurons of the murine embryonic central and peripheral nervous systems. In embryos lacking Runx1 activity, hindbrain branchiovisceral motor neuron precursors of the cholinergie lineage are correctly specified but then fail to enter successive stages of differentiation and undergo increased cell death resulting in neuronal loss in the mantle layer. Runx1 inactivation also leads to a loss of selected sensory neurons in trigeminal and vestibulocochlear ganglia. These findings uncover previously unrecognized roles for Runx1 in the regulation of neuronal subtype specification. / This thesis thus presents a novel factor which functions at several steps in the development of the mammalian nervous system and adds to the growing body of work on the processes involved in elaborating such a complex and vital structure.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.103300
Date January 2007
CreatorsTheriault, Francesca M.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Division of Neuroscience.)
Rights© Francesca M. Theriault, 2007
Relationalephsysno: 002651468, proquestno: AAINR38653, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds