Transporto informacinės sistemos privalo greitai apdoroti milžiniškus ir vis didėjančius duomenų kiekius. Kadangi skirtingiems tikslams pasiekti ar skirtingoms išvadoms padaryti reikalingų duomenų kiekis kartais gali skirtis kelias dešimtis ar net kelis šimtus kartų jį optimizavus pavyktų sutaupyti daug laiko ir resursų. Siekiant mažinti duomenų kiekį, neprarandant svarbios informacijos yra naudojamas duomenų grupavimas – objektų priskyrimas tam tikrom grupėm pabal bendrus požymius. Šio darbo tikslas – išanalizuoti ir įvertinti grupavimo algoritmų klases, jų tipinius atstovus bei jų pritaikymą transporto sistemų duomenų grupavimui. / The object of investigation of this paper is data clustering and adjustment of data clustering algorithms to traffic flow control systems. The main goal is to analyze which class of clustering algorithms can perform better with specific traffic data, how much of this data is enough to forecast precise results, how much can we minimize and reduce our data and still get correct results.
Identifer | oai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2006~D_20081203_184401-71779 |
Date | 04 March 2009 |
Creators | Penikas, Marius |
Contributors | Čivilis, Alminas, Vilnius University |
Publisher | Lithuanian Academic Libraries Network (LABT), Vilnius University |
Source Sets | Lithuanian ETD submission system |
Language | Lithuanian |
Detected Language | Unknown |
Type | Master thesis |
Format | application/pdf |
Source | http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20081203_184401-71779 |
Rights | Unrestricted |
Page generated in 0.0018 seconds