Le carbone organique des sols (COS) joue un rôle majeur dans le maintien des propriétés des sols, et constitue un important réservoir de carbone sensible aux perturbations anthropiques dont les changements d'usage ou de gestion des terres. En Amazonie, la déforestation libère des gaz à effet de serre (GES) par le brûlis de la végétation mais les stocks de COS sont également susceptibles d'évoluer et de contribuer aux émissions de GES. Nous montrons que ces variations de stocks sont cependant mal comprises à l'échelle du biome, en raison de l'approche par chrono-séquence qui induit de nombreuses incertitudes et du manque de données sur la gestion des agrosystèmes implantés après déforestation. L'étude a été conduite sur un site agronomique diachronique en Guyane, déboisé sans brûlis et avec des restitutions de biomasse forestière au sol, sur lequel ont été implantés 3 systèmes de culture : une prairie et deux systèmes maïs/soja avec ou sans travail du sol. L'objectif a été de déterminer le devenir du carbone forestier et du COS des agrosystèmes. Les fluctuations des stocks ont été mesurées jusqu'à 5 ans après déforestation dans la couche 0-30 cm, un bilan est proposé pour la couche 0-100 cm à 5 ans. La décomposition des débris de bois, apportés au sol suite à la déforestation, a été étudiée via leur perte de masse et leur caractérisation par pyrolyse Rock-Eval. La répartition granulométrique du COS a été mesurée 4 ans après déforestation. L'isotopie δ13C a été utilisée dans le sol sous prairie pour distinguer le carbone d'origine prairiale. L'apport de carbone issu de la déforestation a entrainé une augmentation des stocks de COS, mais de courte durée car les débris de bois se sont rapidement décomposés et n'ont pas induit de stockage durable de COS. Cinq ans après déforestation les stocks de COS sous prairie sont similaires à ceux observés sous forêt, grâce à des apports de carbone importants par les racines, alors que sous cultures les stocks diminuent d'environ 18 %, sans que l'on ait distingué un effet du travail du sol. La décroissance du carbone forestier, qui concerne l'ensemble des fractions granulométriques du sol, a donc été compensée par les apports de carbone sous prairie, ce qui n'est pas le cas sous cultures annuelles. Le modèle RothC a pu être validé dans notre situation même s'il a surestimé légèrement les stocks sous cultures. Nos résultats, replacés dans le contexte amazonien montrent que les diminutions de COS observées ici sont moins importantes que pour l'ensemble des tropiques humides, probablement en raison de la gestion optimale du site et de la courte durée du temps d'observation. / Soil organic carbon is a key component of soil quality, and represents a large part of the terrestrial carbon stock, sensitive to human perturbations including land-use change. In Amazonia, deforestation induces greenhouse gases (GHG) emissions due to vegetation burning, but SOC stocks also change, which can induce GHG emissions. We show that these changes are misunderstood at the biome scale, because of the chronosequence approach that induces uncertainties, and because of the lack of management data of the agrosystems established after deforestation. We studied here an agronomic trial with a diachronic approach in French Guiana, deforested with a fire-free method that returned large amount of forest organic matter. Three agrosystems were set up: a grassland and two annual crop systems (maize/soybean) with and without soil tillage. We aimed to measure the fate of forest carbon and of SOC in the agrosystems. SOC stocks fluctuations were assessed up to 5 years after deforestation in the layer 0-30 cm, and a comparison forest-agroecosystems in the layer 0-100 cm was done at 5 years. Decomposition of woody debris buried in the soil after deforestation was assessed by mass loss approach and Rock-Eval pyrolysis. SOC distribution in granulometric fractions was measured 4 years after deforestation. δ13C methods were used in the grassland soil to distinguish the carbon derived from forest or grassland. We found that carbon inputs from deforestation increased SOC stocks, but only at short-term because woody debris decomposition was fast and did not induce a mid-term SOC storage. Five years after deforestation SOC stocks in grassland are similar to the forest, thanks to carbon inputs from root activity. In the annual crops SOC stocks decrease of about 18 %, and no difference is found according to the soil tillage. The decay of forest soil carbon, which affected the whole granulometric fractions of SOC, is thus offset in grassland but not in annual crops. RothC model could be validated in our study, but slightly overestimated SOC stocks in annual crops. Replaced in the Amazonian context, our results showed that the SOC decrease here was lower than other studies across humid tropics. This can probably be explained by the optimal management of the agrosystems, and the short time lapse studied.
Identifer | oai:union.ndltd.org:theses.fr/2014NSAM0036 |
Date | 27 November 2014 |
Creators | Fujisaki, Kenji |
Contributors | Montpellier, SupAgro, Brossard, Michel, Perrin, Anne-Sophie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds