The historical development, current practice, and the future of interventional neuroradiology are intricately linked to the advancements in the imaging and devices used for neuroendovascular treatments. This thesis explores the advanced imaging potential of the C-arm imaging systems used in the neurointerventional suite and investigates the initial clinical experience with a new flow diverter device to treat the intracranial aneurysms. A cohort of aneurysmal SAH patients who developed delayed cerebral ischaemia (DCI) were prospectively studied with a new parenchymal blood volume (PBV) research protocol C-arm CT examination concurrent with a magnetic resonance (MR) imaging examination that included perfusion and diffusion weighted sequences. Using a robust quantitative volume-of-interest analysis, it was demonstrated that C-arm CT PBV measurements are in agreement with MR-PWI CBV and CBF, and the PBV represents a composite perfusion parameter with both blood-flow (≈60%) and blood-volume (≈40%) weightings. Subsequently, using a voxel-wise ROC curve analysis and MR-DWI, it was shown that using optimal thresholds, C-arm CT PBV measurements allow reliable demarcation of the irreversibly infarcted parenchyma. For evaluation of ischaemic parenchyma, the PBV measurements were reliable for moderate-to-severe ischaemia but were prone to underestimate the mild-to-moderate ischaemia. A catalogue of reference mean PBV measurements was then created for various anatomical regions encompassing the whole brain after excluding any locations with ongoing ischaemia or infarction. Next, using an ROI-based analysis of the C-arm CT projection data, steady-state contrast concentration assumption underlying the PBV calculations was investigated. It was demonstrated that for clinical scans, the ideal steady-state assumption is not fully met, however, for a large majority of C-arm CT examinations the temporal characteristics of TDCs closely approximate the expected ideal steady-state. The degree to which the TDC of a C-arm CT scan approximates the ideal steady-state was found to influence the resulting PBV measurements and their agreement to MR-CBV. Moreover, the temporal characteristics of TDCs showed inter-subject variation. Finally, the C-arm CT cross-sectional soft tissue images were demonstrated to be of adequate quality for the assessment of ventricles and for the detection of procedural vessel rupture. These findings advance the understanding of the nature of PBV parameter, establish the optimal PBV thresholds for infarction, provide reference PBV measurements, and highlight the limitations of C-arm CT PBV imaging. The work is of considerable clinical significance and has implications for implementation of C-arm CT PBV imaging in the interventional suite for management of patients with acute brain ischaemia. In regards to the initial clinical experience with the flow diversion treatment of intracranial aneurysms, the procedural, angiographic, and clinical outcomes were studied. Several pertinent technical and clinical issues were highlighted for this new treatment approach. Based on the observations made during this work, a new grading schema was then developed to monitor the angiographic outcomes after flow diversion treatment. Using the angiographic data for patients treated with FD, the new grading schema was demonstrated to be sufficiently sensitive to register gradual aneurysm occlusion and evaluate parent artery patency, with an excellent inter-rater reliability and applicability to various aneurysm morphologies. This work (largest multi-centre series at the time of its publication) informed the interventional neuroradiology community about the safety, efficacy, and outcomes of flow diversion treatment. Additionally, it provided a sensitive and reliable scale to evaluate the angiographic outcomes after flow diversion treatment, in both research and clinical practice.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:664784 |
Date | January 2015 |
Creators | Kamran, Mudassar |
Contributors | Byrne, James V. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:ccb2550c-cb28-42f1-bd95-4dcee4ec1ff4 |
Page generated in 0.0018 seconds