Thesis (Masters Diploma (Engineering))--Cape Technikon, 1997 / The idea for this study occurred when movement of the caisson extension to the
breakwater was observed.
The major concern was, what would happen if the caisson breakwater extension
failed? What would the financial implications be to the port?
The CSIR have carried out a number of studies with regards to the safety of the
structure. The consequences of caisson failure and the possible effects on the port
were however not investigated.
When it was determined that settlement was taking place, information concerning
the condition of the caisson structure and factors influencing the structure were
gathered. Investigations on the following were done:
(a) Extent of caisson settlement.
(b) Sediment movement around the structure.
(c) Foundation condition.
(d) Wave impacts of long and short period waves on the Ben Schoeman Dock in
the event of caisson failure. (Refraction and diffraction).
(e) Financial implications due to possible container operation downtime at Ben
Schoeman Dock in the event of caisson failure.
(f) The tourist potential of the structure.
The conclusion reached in this study was that the Ben Schoeman Dock would not
be adversely effected if partial or complete failure of the main breakwater should
take place. One could even question the length of the extension and whether it was
actually required.
The recommendations of this study would be as follows follows:
Maintain the caisson extension in good condition as it will be important
for possible future extensions to the port.
Develop the breakwater as it is an asset which has potential for
tourism to Cape Town.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/1025 |
Date | January 1997 |
Creators | Lourens, Deon Willem |
Publisher | Cape Technikon |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/za/ |
Page generated in 0.0018 seconds