Through progressive industrialization and the relentless consumption of natural raw materials, man is exerting a negative influence on his habitat. In particular, water as the basis of life and almost all processes of our economy is contaminated by various pollutants due to excessive use and insufficient purification. Here, oxyanions, heavy metal ions and organic pollutants pose a high risk to aquatic habitats and ultimately to humans. Due to insufficient removal, they also contribute to the loss of non-renewable raw materials for industrial cycles. Due to a mostly low effect concentration and potential interactions with diverse living organisms, the removal of many contaminants is extremely important to avoid further altering existing ecosystems.
Adsorption represents an energy-efficient method of removal using adsorbents suitable for this purpose. Highly cross-linked resin polymers such as poly(melamine-co-formaldehyde) (PMF) with its excellent chemical resistance, high number of functional groups and ease of preparation, represent promising starting points for adsorbents.
This dissertation describes the colloidal aqueous synthesis of nanoporous resin particles (e.g. PMF) by templating with SiO2 nanoparticles (SiO2 NPs), which are subsequently used to adsorb water pollutants. An overall goal of this work consists of elucidating the mechanism for particle and pore formation by systematically varying various synthesis parameters. Electron microscopy, N2-soprtion and particle size measurement are used to analyze the morphology, size and pore structure of the particles. Comprehensive investigations thus allow to determine the influence of each tested synthesis parameter on these properties.
A very important goal, especially for future large-scale applicability, is the colloidal production of uniform particles, which have both a high ordered porosity and particle diameters in the range of a few micrometers. This enables an application as a fixed-bed adsorber that can be flowed through. This goal is closely linked to the mechanistic elucidation of pore and particle formation in the synthesis.
The prepared nanoporous PMF particles were tested for various adsorption applications after their characterization. In order to obtain a comprehensive picture of the applicability of PMF particles, experiments with oxyanions, with pharmaceuticals as representatives of organic pollutants and with heavy metal ions will be carried out respectively. On the one hand, these experiments will focus on investigating the adsorption performance and mechanism of PMF with the respective pollutant. On the other hand, the influence of the changed porosity on the adsorption mechanism is investigated by using different particles of a varied synthesis parameter.
Sulfate and phosphate ions were investigated in the oxyanion class. Extremely high separation rates were demonstrated for both ions, significantly outperforming previous commercially available materials. In experiments concerning a potential selective adsorption and thus separation of both species, the PMF/SiO2 hybrid particles, in which the template had not yet been removed, showed a selective sulfate adsorption.
The immobilization of heavy metal ions was analyzed with special focus on the simultaneous separation of the Cu2+ ions and respective anions used here. Investigations of the adsorbent after the adsorption experiments by means of electron microscopy, X-ray scattering and electron spin resonance spectroscopy elucidated the adsorption mechanism, which had been insufficiently analyzed so far. Here, adsorption and surface-induced precipitation were identified as partially separate subprocesses, both of which are responsible for the separation of both metal and anions from solution. In adsorption experiments with the monovalent ions nitrate and chloride, a two-step uptake process was identified, which was mathematically described for the first time via a new adsorption isotherm.
In the scope of organic water pollutants, the separation of the pharmaceutical diclofenac is being tested. In particular, the adsorption of pharmaceuticals is an urgent issue due to their low effect concentration and ubiquity in surface and tap waters. Pharmaceutical separation using PMF has hardly been investigated worldwide despite its promising properties. In these experiments, particles templated with SiO2 NPs of different sizes and stabilized in different ways were tested. This resulted in pore systems that varied from each other especially in their accessibility of the pore system and in the diameter of the connecting channels between the main cavities. These characteristics significantly affected the adsorption capacity and separation rates in low concentration range.
A final goal is to synthesize a resin network that uses an equally highly functional triazine-based monomer instead of melamine. The monomer 2,4,6-tris(2,4,6-trihydroxyphenyl)-1,3,5-triazine (3PT) possesses nine hydroxyl groups each, whereby a polymer based on it should exhibit strongly modified adsorption properties compared to PMF. This monomer was used in an aqueous polymerization analogous to PMF to produce a previously unknown polymer network, which was designated P(3PT-F). Here, templating was omitted because the newly prepared material already exhibited intrinsic nanoporosity due to the size of the 3PT monomer. In subsequent adsorption experiments, very high separation rates were demonstrated for the toxic metal ions Pb2+, Cd2+ and Ni2+. In realistic initial concentrations, the contamination was reduced to drinking water quality in each case. P(3PT-F) also showed highly selective removal of Pb2+ over the common ions Ca2+, Mg2+, K+ and Fe2+. As fundamental evidence, reusability was also demonstrated by complete desorption with dilute HCl and subsequent re-adsorption without significant reduction in capacity.
Overall, starting from the fundamental study of PMF particle synthesis, a more general understanding of aqueous dispersion polymerization of hydrophobic resins was first derived and templating with hydrophilic SiO2 NPs was implemented. With the help of understanding the particle growth processes and interactions responsible for templating, the properties of the resulting particles could be controlled. Subsequently, the influence of the changed porosity in particular on the separation performance could be investigated in the adsorption studies. In addition, it was possible to analyze which interactions PMF enters into with the respective pollutant types. By replacing the monomer melamine with a hydroxyl-containing monomer, a novel resin polymer could be produced. With its altered porosity and reactivity, this can now serve as a new starting point for adsorption experiments with strongly altered adsorption performance, e.g. towards heavy metal ions.:Abstract 1
Kurzfassung 5
List of Publications 9
First-Author Publications 9
Co-Author Publications 10
Patent 12
Conference Proceedings 12
Oral Presentations 12
Poster 12
List of Figures 13
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 14
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 15
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 16
SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 18
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 19
List of Tables 21
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 21
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 21
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 22
SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 22
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 23
Abbreviations 25
Symbols 26
1. Introduction 1
2. Objectives and Experimental Design 5
3. Scientific Background 11
3.1. Poly(melamine-co-formaldehyde) 11
3.1.1. Polymerization Mechanism 11
3.1.2. Synthesis Strategies for the Preparation of Porous PMF Particles. 13
3.1.3. Fields of Application of PMF 13
3.2. Adsorption 15
3.2.1. Adsorption Isotherms and Mathematical Modeling 16
3.3. Surface Precipitation 20
4. Fundamentals of Instrumental Analytics 23
4.1. Gas Sorption Measurements 23
4.1.1. Determination of Pore Sizes 26
4.1.2. Determination of Specific Surface Area 27
4.2. Transmission Electron Microscopy 29
4.3. Inductively Coupled Plasma Optical Emission Spectroscopy 31
Results and Discussion 33
Chapter Overview 33
5. Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 37
Graphical Abstract 37
Abstract 37
1. Introduction 38
2. Results and Discussion 39
2.1. Synthesis and Characterization of the PMF Particles 40
2.2. Sorption Experiments 47
3. Materials and Methods 54
3.1. Materials 54
3.2. Methods 54
3.3. Synthesis of the PMF Particles 56
3.4. Water Treatment Experiments 57
4. Conclusions 59
6. Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 65
Graphical Abstract 65
Abstract 65
1. Introduction 66
2. Materials 68
3. Methods 68
3.1. Synthesis of the PMF particles 70
3.2. Water treatment experiments with diclofenac solution 72
3.3. Theoretical model 72
3. Results and Discussion 73
3.1. Synthesis and characterization of the PMF particles 74
3.2. Adsorption of Pharmaceutics 80
4. Conclusion 84
7. Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 89
Graphical Abstract 89
Abstract 89
1. Introduction 90
2. Materials and methods 91
2.1. Materials 91
2.2. Synthesis of the Poly(melamine-co-formaldehyde) particles 92
2.3. Methods 93
2.4. Water treatment experiments 96
3. Results and discussion 97
3.1. Synthesis and characterization of the PMF particles 98
3.2. Cu2+ uptake experiments 102
3.3. Mechanism for Cu2+ and Anion Removal 115
3.4. Investigation of other heavy metal salts 116
4. Conclusions 117
8. SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 121
Graphical Abstract 121
Abstract 121
1. Introduction 122
2. Materials and methods 123
2.1. Materials 123
2.2. Methods 124
2.3. Synthesis of the PMF particles 125
2.4. Water treatment experiments 128
2.5. Theoretical model 129
3. Results and Discussion 132
3.1. PMF-Std 133
3.2. Influence of the reaction mixture composition 136
3.3. Variation of the process parameters 140
3.4. Conclusion on the templating mechanism for PMF-Std 146
3.5. Acquiring µm-sized porous PMF particles for adsorption application 149
3.6. Adsorption experiments with K2Cr2O7 solution 151
4. Conclusion 155
9. Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 161
Graphical Abstract 161
Abstract 161
1. Introduction 162
2. Materials and methods 163
2.1. Materials 163
2.2. Synthesis 164
2.3. Characterization 166
2.4. Batch adsorption experiments 169
2.5. Calculation and theoretical models 170
3. Results and discussion 172
3.1. Synthesis and characterization of the polymer particles 172
3.2. Adsorption experiments with Ni2+, Cd2+, and Pb2+ onto P(3PT-F)-3L 178
4. Conclusions 184
10. Conclusion and Outlook 191
Contribution to Publications 197
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 197
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 198
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 199
SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 200
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 201
Danksagung 203
Appendix 205
References 207
Eidesstattliche Versicherung 217 / Durch fortschreitende Industrialisierung und den schonungslosen Verbrauch natürlicher Rohstoffe übt der Mensch negativen Einfluss auf seinen Lebensraum aus. Insbesondere Wasser als Grundlage des Lebens und fast aller Prozesse unserer Wirtschaft wird durch eine übermäßige Nutzung und unzureichende Reinigung mit diversen Schadstoffen kontaminiert. Hierbei stellen Oxyanionen, Schwermetallionen und organische Schadstoffe ein hohes Risiko für aquatische Lebensräume und letztendlich auch den Menschen dar. Durch unzureichende Entfernung tragen sie außerdem zum Verlust nicht-erneuerbarer Rohstoffe für industrielle Kreisläufe bei. Durch eine meist geringe Effektkonzentration und potentielle Wechselwirkungen mit diversen Lebewesen ist die Entfernung vieler Verunreinigungen extrem wichtig, um bestehende Ökosysteme nicht weiter zu verändern.
Adsorption stellt eine energieeffiziente Methode zur Entfernung dieser Schadstoffe durch hierfür geeignete Adsorbentien dar. Hochgradig vernetzte Harzpolymere wie Poly(melamin-co-formaldehyd) (PMF) stellen mit ihrer sehr hohen chemischen Beständigkeit, einer hohen Zahl funktioneller Gruppen und einfachen Herstellbarkeit einen vielversprechenden Ausgangspunkt für Adsorbentien dar.
Diese Dissertation beschreibt die kolloidale, wässrige Synthese nanoporöser Harzpartikel (z. B. PMF) durch eine Templatierung mit SiO2 Nanopartikeln (SiO2 NPs), welche anschließend zur Adsorption von Wasserschadstoffen eingesetzt werden. Ein übergeordnetes Ziel dieser Arbeit besteht aus der Aufklärung des Mechanismus zur Partikel- und Porenbildung durch systematische Variation verschiedener Syntheseparameter. Mittels Elektronenmikroskopie, N2-Sorption und Partikelgrößenmessung wird die Morphologie, Größe und Porenstruktur der Partikel analysiert. Umfassende Untersuchungen ermöglichen somit, den Einfluss der einzelnen getesteten Syntheseparameter auf diese Eigenschaften zu bestimmen.
Ein sehr wichtiges Ziel, besonders für eine zukünftige großtechnische Anwendbarkeit, ist dabei die kolloidale Herstellung uniformer Partikel, welche sowohl eine hohe geordnete Porosität als auch Partikeldurchmesser im Bereich einiger Mikrometer aufweisen. Dies ermöglicht einen Einsatz als durchströmbaren Festbett-Adsorber. Dieses Ziel ist eng mit der mechanistischen Aufklärung der Poren- und Partikelbildung in der Synthese verknüpft.
Die hergestellten nanoporösen PMF-Partikel wurden nach ihrer Charakterisierung für verschiedene Adsorptionsanwendungen getestet. Um ein umfassendes Bild über die Einsetzbarkeit von PMF-Partikeln zu erhalten, sollen jeweils Versuche mit Oxyanionen, mit Schwermetallionen und mit Pharmazeutika als Vertreter organischer Schadstoffe durchgeführt werden. Bei diesen Versuchen steht zum einen die Untersuchung der Adsorptionsleistung und des Adsorptionsmechanismus des jeweiligen Schadstoffes an PMF im Vordergrund. Zum anderen wird durch die Verwendung verschiedener Partikel, bei welchen ein einzelner Syntheseparameter variiert wurde, der Einfluss der veränderten Porosität auf den Adsorptionsmechanismus untersucht.
Sulfat- und Phosphationen wurden in der Klasse der Oxyanionen untersucht. Für beide Ionen wurden extrem hohe Abtrennraten nachgewiesen, welche bisherige kommerziell erhältliche Materialien signifikant übertraf. In Versuchen hinsichtlich einer potentiellen selektiven Adsorption und somit Trennung beider Spezies, zeigten die PMF/SiO2-Hybridpartikel, bei welchen das Templat noch nicht entfernt wurde, eine selektive Sulfatadsorption.
Die Immobilisierung von Schwermetallionen wurde mit besonderem Fokus auf die gleichzeitig auftretende Abtrennung der dafür verwendeten Cu2+-Ionen und jeweiliger Anionen analysiert. Durch Untersuchungen des Adsorbens nach den Adsorptionsversuchen mittels Elektronenmikroskopie, Röntgenstreuung und Elektronenspinresonanz-Spektroskopie wurde der bisher unzureichend analysierte Adsorptionsmechanismus aufgeklärt. Hierbei wurden Adsorption und oberflächeninduzierte Fällung als separate Teilprozesse identifiziert, welche beide jeweils für die Abscheidung von sowohl Metall- als auch Anionen aus der Lösung verantwortlich sind. Bei Adsorptionsversuchen mit den einwertigen Ionen Nitrat und Chlorid wurde ein zweistufiger Prozess identifiziert, welcher erstmals über eine neue Adsorptionsisotherme mathematisch beschrieben wurde.
Im Bereich organischer Wasserschadstoffe wird die Abtrennung des Pharmazeutikums Diclofenac getestet. Insbesondere die Adsorption von Pharmazeutika stellt aufgrund von deren geringen Effektkonzentration und Allgegenwärtigkeit in Oberflächen- und Leitungswässern ein dringliches Thema dar. Die Pharmazeutika-Abtrennung mittels PMF wurde trotz seiner vielversprechenden Eigenschaften weltweit bisher kaum untersucht. Im Rahmen dieser Versuche wurden Partikel getestet, welche mit unterschiedlich großen und unterschiedlich stabilisierten SiO2 NPs templatiert wurden. Dadurch entstanden Porensysteme, die besonders in derer Zugänglichkeit ihres Porensystems und in dem Durchmesser der Verbindungskanäle zwischen den Hauptkavitäten voneinander variierten. Diese Eigenschaften wirkten sich signifikant auf die Adsorptionskapazität und die Abtrennraten im niedrigen Konzentrationsbereich aus.
Ein abschließendes Ziel ist die Synthese eines Harznetzwerkes, welches statt Melamin auf einem ebenso hochfunktionellen, triazinbasierten Monomer basiert. Das Monomer 2,4,6-Tris(2,4,6-trihydroxyphenyl)-1,3,5-triazin (3PT) besitzt jeweils neun Hydroxylgruppen, wodurch ein darauf basierendes Polymer stark veränderte Adsorptionseigenschaften gegenüber PMF aufweisen soll. Mit diesem Monomer wurde in einer analog zu PMF durchgeführten wässrigen Polymerisation ein bisher unbekanntes Polymernetzwerk hergestellt, welches als P(3PT-F) bezeichnet wurde. Hierbei wurde auf Templatierung verzichtet, da das neu hergestellte Material bereits intrinsische Nanoporosität durch die Größe des verwendeten 3PT-Monomers aufwies. In anschließenden Adsorptionsversuchen wurden sehr hohe Abtrennraten für die toxischen Metallion Pb2+, Cd2+ und Ni2+ nachgewiesen. In realistischen Ausgangskonzentrationen wurde die Kontamination mit diesen Ionen jeweils auf Trinkwasserqualität reduziert. P(3PT-F) zeigte außerdem eine sehr selektive Abtrennung von Pb2+ gegenüber den häufig vorkommenden Ionen Ca2+, Mg2+, K+ und Fe2+. Als grundlegender Beweis konnte eine Wiederverwendbarkeit durch die vollständige Desorption mit verdünnter HCl gezeigt werden und eine anschließende erneute Adsorption ohne signifikante Verringerung der Kapazität.
Insgesamt wurde ausgehend von der grundlegenden Untersuchung der PMF-Partikelsynthese erst ein generelleres Verständnis der wässrigen Dispersionspolymerisation hydrophober Harze abgeleitet und die Templatierung mit hydrophilen SiO2 NPs implementiert. Mithilfe des Verständnisses der Partikelwachstumsprozesse und der Wechselwirkungen, welche für die Templatierung verantwortlich sind, konnten die Eigenschaften der entstehenden Partikel gesteuert werden. Im Rahmen der Adsorptionsuntersuchungen konnte anschließend der Einfluss insbesondere der veränderten Porosität auf die Abtrennleistung untersucht werden. Außerdem konnte analysiert werden, welche Wechselwirkungen PMF mit den jeweiligen Schadstoffarten eingeht. Durch den Austausch des Monomers Melamin gegen das hydroxylhaltiges Monomer 3PT konnte ein neuartiges Harzpolymer hergestellt werden. Dieses kann mit seiner veränderten Porosität und Reaktivität nun als neuer Ausgangspunkt für Adsorptionsexperimente mit stark veränderter Adsorptionsleistung z. B. gegenüber Schwermetallionen dienen.:Abstract 1
Kurzfassung 5
List of Publications 9
First-Author Publications 9
Co-Author Publications 10
Patent 12
Conference Proceedings 12
Oral Presentations 12
Poster 12
List of Figures 13
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 14
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 15
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 16
SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 18
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 19
List of Tables 21
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 21
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 21
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 22
SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 22
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 23
Abbreviations 25
Symbols 26
1. Introduction 1
2. Objectives and Experimental Design 5
3. Scientific Background 11
3.1. Poly(melamine-co-formaldehyde) 11
3.1.1. Polymerization Mechanism 11
3.1.2. Synthesis Strategies for the Preparation of Porous PMF Particles. 13
3.1.3. Fields of Application of PMF 13
3.2. Adsorption 15
3.2.1. Adsorption Isotherms and Mathematical Modeling 16
3.3. Surface Precipitation 20
4. Fundamentals of Instrumental Analytics 23
4.1. Gas Sorption Measurements 23
4.1.1. Determination of Pore Sizes 26
4.1.2. Determination of Specific Surface Area 27
4.2. Transmission Electron Microscopy 29
4.3. Inductively Coupled Plasma Optical Emission Spectroscopy 31
Results and Discussion 33
Chapter Overview 33
5. Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 37
Graphical Abstract 37
Abstract 37
1. Introduction 38
2. Results and Discussion 39
2.1. Synthesis and Characterization of the PMF Particles 40
2.2. Sorption Experiments 47
3. Materials and Methods 54
3.1. Materials 54
3.2. Methods 54
3.3. Synthesis of the PMF Particles 56
3.4. Water Treatment Experiments 57
4. Conclusions 59
6. Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 65
Graphical Abstract 65
Abstract 65
1. Introduction 66
2. Materials 68
3. Methods 68
3.1. Synthesis of the PMF particles 70
3.2. Water treatment experiments with diclofenac solution 72
3.3. Theoretical model 72
3. Results and Discussion 73
3.1. Synthesis and characterization of the PMF particles 74
3.2. Adsorption of Pharmaceutics 80
4. Conclusion 84
7. Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 89
Graphical Abstract 89
Abstract 89
1. Introduction 90
2. Materials and methods 91
2.1. Materials 91
2.2. Synthesis of the Poly(melamine-co-formaldehyde) particles 92
2.3. Methods 93
2.4. Water treatment experiments 96
3. Results and discussion 97
3.1. Synthesis and characterization of the PMF particles 98
3.2. Cu2+ uptake experiments 102
3.3. Mechanism for Cu2+ and Anion Removal 115
3.4. Investigation of other heavy metal salts 116
4. Conclusions 117
8. SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 121
Graphical Abstract 121
Abstract 121
1. Introduction 122
2. Materials and methods 123
2.1. Materials 123
2.2. Methods 124
2.3. Synthesis of the PMF particles 125
2.4. Water treatment experiments 128
2.5. Theoretical model 129
3. Results and Discussion 132
3.1. PMF-Std 133
3.2. Influence of the reaction mixture composition 136
3.3. Variation of the process parameters 140
3.4. Conclusion on the templating mechanism for PMF-Std 146
3.5. Acquiring µm-sized porous PMF particles for adsorption application 149
3.6. Adsorption experiments with K2Cr2O7 solution 151
4. Conclusion 155
9. Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 161
Graphical Abstract 161
Abstract 161
1. Introduction 162
2. Materials and methods 163
2.1. Materials 163
2.2. Synthesis 164
2.3. Characterization 166
2.4. Batch adsorption experiments 169
2.5. Calculation and theoretical models 170
3. Results and discussion 172
3.1. Synthesis and characterization of the polymer particles 172
3.2. Adsorption experiments with Ni2+, Cd2+, and Pb2+ onto P(3PT-F)-3L 178
4. Conclusions 184
10. Conclusion and Outlook 191
Contribution to Publications 197
Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 197
Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 198
Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 199
SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 200
Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 201
Danksagung 203
Appendix 205
References 207
Eidesstattliche Versicherung 217
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85125 |
Date | 03 May 2023 |
Creators | Borchert, Konstantin B.L. |
Contributors | Fery, Andreas, Weber, Jens, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds