Return to search

GNSS-based Hardware-in-the-loop Simulation of Spacecraft Formation Flight: An Incubator for Future Multi-scale Ionospheric Space Weather Studies

Spacecraft formation flying (SFF) offers robust observations of multi-scale ionospheric space weather. A number of hardware-in-the-loop (HIL) SFF simulation testbeds based on Global-Navigation-Satellite-Systems (GNSS) have been developed to support GNSS-based SFF mission design, however, none of these testbeds has been directly applied to ionospheric space weather studies. The Virginia Tech Formation Flying Testbed (VTFFTB), a GNSS-based HIL simulation testbed, has been developed in this work to simulate closed-loop real-time low Earth orbit (LEO) SFF scenarios. The final VTFFTB infrastructure consists of three GNSS hardware signal simulators, three multi-constellation multi-band GNSS receivers, three navigation and control systems, an STK visualization system, and an ionospheric remote sensing system. A fleet of LEO satellites, each carrying a spaceborne GNSS receiver for navigation and ionospheric measurements, is simulated in scenarios with ionospheric impacts on the GPS and Galileo constellations. Space-based total electron density (TEC) and GNSS scintillation index S4 are measured by the LEO GNSS receivers in simulated scenarios. Four stages of work were accomplished to (i) build the VTFFTB with a global ionospheric modeling capability, and (ii) apply the VTFFTB to incubate future ionospheric measurement techniques. In stage 1, a differential-TEC method was developed to use space-based TEC measurements from a pair of LEO satellites to determine localized electron density (Ne). In stage 2, the GPS-based VTFFTB was extended to a multi-constellation version by adding the Galileo. Compared to using the GPS constellation only, using both GPS and Galileo constellations can improve ionospheric measurement quality (accuracy, precision, and availability) and relative navigation performance. Sensitivity studies found that Ne retrieval characteristics are correlated with LEO formation orbit, the particular GNSS receivers and constellation being used, as well as GNSS carrier-to-noise density C/N0. In stage 3, the VTFFTB for dual-satellite scenarios was further extended into a 3-satellite version, and then implemented to develop a polar orbit scenario with more fuel-efficient natural motion. In stage 4, a global 4-dimensioanl ionospheric model (TIE-CGM) was incorporated into the VTFFTB to significantly improve the modelling fidelity of multi-scale ionospheric space weather. Equatorial and polar space weather structures (e.g. plasma bubbles, tongues-of-ionization) were successfully simulated in 4-dimensional ionospheric scenarios on the enhanced VTFFTB. The dissertation has demonstrated the VTFFTB is a versatile GNSS-based SFF mission incubator to study ionospheric space weather impacts and develop next-generation multi-scale ionospheric observation missions. / Doctor of Philosophy / Spacecraft formation flying (SFF) is a space mission architecture with a group of spacecraft flying together and working as a team. SFF provides new opportunities for robust, flexible and low-cost observations of various phenomena in the ionized layer of Earth's atmosphere (called the ionosphere). Several hardware SFF simulation platforms based on Global Navigation Satellite Systems (GNSS) have been established to develop GNSS-based SFF missions, however, none of these platforms has ever directly used on-board GNSS receivers to study the impact of space weather on ionospheric density structures. The Virginia Tech Formation Flying Testbed (VTFFTB), a hardware simulation infrastructure using multiple GNSS signals, has been built in this work to emulate realistic SFF scenarios in low altitude orbits. The overall VTFFTB facility comprises three GNSS hardware signal emulators, three GNSS signal receivers, three navigation and control components, a software visualization component, and an ionospheric measurement component. Both Global-Positioning-System (GPS) and Galileo (the European version GNSS) are implemented in the VTFFTB. The objectives of this work are to (i) develop the VTFFTB with a high-fidelity ionospheric modeling capability, and (ii) apply the VTFFTB to incubate future ionospheric measurement techniques with GNSS receivers in space. A fleet of two or three spacecraft, each having a GNSS receiver to navigate and sense the ionosphere is emulated in several space environments. The electron concentration of the ionosphere and the GNSS signal fluctuation are measured by the GNSS receivers from space in simulated scenarios. These measurements are advantageous to study the location, size and structure of irregular ionospheric phenomena nearby the trajectory of spacecraft fleet. The culmination of this study is incorporation of an external global ionospheric model with temporal variations into the VTFFTB infrastructure to model a variety of realistic ionospheric structures and space weather impacts. Equatorial and polar space weather phenomenon were successfully simulated on the VTFFTB to verify a newly developed space-borne electron density measurement technique in the 3-dimensional ionosphere. Overall, it was successfully demonstrated that the VTFFTB is a versatile GNSS-based SFF mission incubator to study multiple kinds of ionospheric space weather impacts and develop next-generation space missions for ionospheric measurements.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106554
Date15 June 2020
CreatorsPeng, Yuxiang
ContributorsElectrical Engineering, Scales, Wayne A., Ruohoniemi, John Michael, Earle, Gregory D., Black, Jonathan T., Coster, Anthea Jane
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/x-zip-compressed
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds