Return to search

Zeros of a Family of Complex-Valued Harmonic Rational Functions

The Fundamental Theorem of Algebra is a useful tool in determining the number of zeros of complex-valued polynomials and rational functions. It does not, however, apply to complex-valued harmonic polynomials and rational functions generally. In this thesis, we determine behaviors of the family of complex-valued harmonic functions $f_{c}(z) = z^{n} + \frac{c}{\overline{z}^{k}} - 1$ that defy intuition for analytic polynomials. We first determine the sum of the orders of zeros by using the harmonic analogue of Rouch\'e's Theorem. We then determine useful geometry of the critical curve and its image in order to count winding numbers by applying the harmonic analogue of the Argument Principle. Combining these results, we fully determine the number of zeros of $f_{c}$ for $c > 0$.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10821
Date12 December 2022
CreatorsLee, Alexander
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.002 seconds