Cheng Man Chuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 78-80). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Different Notions of Negative Curvatures for Kahler Manifolds --- p.3 / Chapter 2.1 --- Definitions --- p.3 / Chapter 2.2 --- Adequate negativity of curvatures of classical domains of type I --- p.13 / Chapter 2.3 --- Adequate negativity of curvatures of classical domains of type IV --- p.23 / Chapter 2.4 --- Structure of complex semi-simple Lie algebra and its relation with Hermitian symmetric spaces --- p.28 / Chapter 2.5 --- Adequate negativity of curvatures of classical domains of type II and III --- p.34 / Chapter 2.6 --- Adequate negativity of curvatures of the two excep- tional bounded symmetric domains --- p.45 / Chapter 3 --- Complex-analyticity of Harmonic Maps between Compact Kahler Manifolds --- p.50 / Chapter 3.1 --- Existence of harmonic maps --- p.50 / Chapter 3.2 --- A Bochner type identity --- p.51 / Chapter 3.3 --- Complex-analyticity of harmonic maps --- p.58 / Chapter 3.4 --- Strong rigidity theorems --- p.62 / Chapter 3.5 --- Some further results from the Bochner technique --- p.64 / Chapter 4 --- Generalization to the Non-compact case --- p.67 / Chapter 4.1 --- A strong rigidity theorem for non-compact Kahler manifolds --- p.67 / Chapter 4.2 --- An existence theorem of harmonic map for Rieman- nian manifolds of finite volumes --- p.69 / Chapter 4.3 --- Bochner formula in the non-compact case --- p.71 / Bibliography --- p.78
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325503 |
Date | January 2006 |
Contributors | Cheng, Man Chuen., Chinese University of Hong Kong Graduate School. Division of Mathematics. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, v, 80 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.002 seconds