This thesis deals with theoretical description of fiber-optic angular velocity sensors, or gyroscopes, and further with design and construction of own sensor of this type. The theoretical part describes problematics of interferometric and resonant fiber-optic gyroscopes. Basic principles and physical limits are described for both types. The main focus is then put on analysis of possible conceptions of these sensors. Solutions using different optical configurations as well as various modulation and signal processing schemes are discussed. The practical part deals with design and construction of own interferometric fiber-optic gyroscope in closed-loop configuration. The gyroscope utilizes all-fiber components including piezoelectric phase modulator and unexpensive single-mode fiber, which are commonly used only for open-loop configurations. To realize closed-loop operation, special modulation scheme based on fully harmonic signal was develeped, which yields linear output within wide dynamic range. This type of modulation requires high level of synchronization achieved by using a field-programmable gate array module. The gyroscope utilizes powerful broadband fiber source, polarizer and Lyot depolarizer which ensure good reciprocity of whole architecture. The parameters of the sensor, obtained by measurement, are even comparable to some sensors using PM fiber, which is much more expensive.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:240886 |
Date | January 2016 |
Creators | Skalský, Michal |
Contributors | Beneš, Petr, Havránek, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds