This thesis studies complex harmonic polynomials of the form $f(z) = az^n + b\bar{z}^k+z$ where $n, k \in \mathbb{Z}$ with $n > k$ and $a, b > 0$. We show that the sum of the orders of the zeros of such functions is $n$ and investigate the locations of the zeros, including whether the zeros are in the sense-preserving or sense-reversing region and a set of conditions under which zeros have the same modulus. We also show that the number of zeros ranges from $n$ to $n+2k+2$ as long as certain criteria are met.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10344 |
Date | 06 December 2021 |
Creators | Work, David |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0024 seconds