Return to search

Methods for functional brain imaging

Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Magnetic resonance imaging (MRI) has demonstrated the potential for non-invasive mapping of structure and function (fMRI) in the human brain. In this thesis, we propose a series of methodological developments towards improved fMRI of auditory processes. First, the inefficiency of standard fMRI that acquires brain volumes one slice at a time is addressed. The proposed single-shot method is capable, for the first time, of imaging the entire brain in a single-acquisition while still maintaining adequate spatial resolution for fMRI. This method dramatically increases the temporal resolution of fMRI (20 fold) and improves sampling efficiency as well as the ability to discriminate against detrimental physiological noise. To accomplish this it exploits highly accelerated parallel imaging techniques and MRI signal detection with a large number of coil elements. We then address a major problem in the application of fMVIRI to auditory studies. In standard fMRI, loud acoustic noise is generated by the rapid switching of the gradient magnetic fields required for image encoding, which interferes with auditory stimuli and enforces inefficient and slow sampling strategies. We demonstrate a fMRI method that uses parallel imaging and redesigned gradient waveforms to both minimize and slow down the gradient switching to substantially reduce acoustic noise while still enabling rapid acquisitions for fMRI. Conventional fMRI is based on a hemodynamic response that is secondary to the underlying neuronal activation. In the final contribution of this thesis, a novel image contrast is introduced that is aimed at the direct observation of neuronal magnetic fields associated with functional activation. Early feasibility studies indicate that the imaging is sensitive to oscillating magnetic fields at amplitudes similar to those observed by magnetoencephalography. / by Thomas Witzel. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/68459
Date January 2011
CreatorsWitzel, Thomas, Ph. D. Massachusetts Institute of Technology
ContributorsLawrence L. Wald., Harvard University--MIT Division of Health Sciences and Technology., Harvard University--MIT Division of Health Sciences and Technology.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format99 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0018 seconds