Return to search

Finite element method and equivalent circuit based design of piezoelectric actuators and energy harvester dynamics

Abstract

The main objective of this thesis was to use and combine Finite Element Method (FEM) and small signal equivalent circuit models in actuator and energy harvesting design and to study the dynamics of the said designs.
The work is divided into four different sections. In the first section, the small signal parameters are derived for a pre-stressed piezoelectric actuator using a series of measurements. In addition, the tunability of the resonance frequency using mass and series capacitors is investigated.
In the second section, a piezoelectric Fabry Perot Interferometer actuator is simulated using FEM and the small signal parameters are derived using FEM simulations. The modelled results are compared with the actual measurements and the resonance frequency is found to differ by only 0.8 percent from the measured values when the mirror is attached to the actuator.
In the third section a piezoelectric wide band energy harvester is developed with multiple beam topology. Two different designs are compared, one produced using the conventional PZT-steel structure and one with a PZT-LTCC structure.
The final section presents an FEM model for a shoe mounted energy harvester and concentrates on the modelling of walking dynamics in FEM. The simulation results are compared to actual measurements and the simulated power values are found to differ by only 7% when the cymbal stroke is below 1.3 mm. The generated model is also expandable to other types of energy harvesters and the methods developed can be used in a variety of different energy harvesting simulations and harvester development.
The results show that the equivalent circuit approach together with FEM modelling is a powerful tool in the dynamics design of piezoelectric actuators and energy harvesters. / Tiivistelmä

Väitöstyön päätavoitteena oli yhdistää elementtimenetelmät (FEM) ja piensignaalimallit aktuaattorien ja energiankorjuukomponenttien suunnittelussa ja tutkia niiden dynamiikkaa.
Työ on jaettu neljään eri osaan. Ensimmäisessä osassa piensignaalimallit johdettiin pietsosähköisestä aktuaattorista mittausten avulla. Lisäksi resonanssitaajuuden muuttamista tutkitaan massan ja sarjaan kytketyn kapasitanssin avulla.
Toisessa osassa simuloidaan pietsosähköistä Fabry Perot interferometria käyttäen elementtimenetelmää. Lisäksi komponentin piensignaalimalli luodaan käyttäen simulointimallia. Lopuksi piensignaalimallin ja prototyypin mittaustuloksia verrataan. Mallin resonanssitaajuus poikkeaa mitatusta vain 0.8 %, kun aktuaattoriin on kiinnitetty peili.
Kolmannessa osassa kehitetään ja verrataan toisiinsa kahta erilaista laajakaistaista monipalkkista pietsosähköistä energian korjuukomponenttia. Toinen komponenteista on toteutettu perinteisellä PZT-teräs rakenteella ja toinen yhteissintratulla PZT-LTCC rakenteella.
Viimeisessä osassa luodaan simulaatio malli kenkään asennetulle cymbal tyyppiselle pietsosähköiselle energian korjuukomponentille ja kävelyn dynamiikkaa tutkitaan. Luotua mallia verrataan prototyypin mittaustuloksiin ja simuloitu energian tuotto poikkeaa vain 7 % alle 1.3 mm puristusliikkeellä.
Tulokset osoittivat, että piensignaalimallin ja elementtimenetelmän yhdistäminen on tehokas apu pietsosähköisten aktuaattorien ja energiankorjuukomponenttien dynamiikan suunnittelussa.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-952-62-0837-4
Date16 June 2015
CreatorsLeinonen, M. (Mikko)
ContributorsJuuti, J. (Jari), Jantunen, H. (Heli)
PublisherOulun yliopisto
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageFinnish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2015
Relationinfo:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226

Page generated in 0.0016 seconds