Orientador: Eduardo Alves do Valle Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T08:10:33Z (GMT). No. of bitstreams: 1
Silva_EliezerdeSouzada_M.pdf: 2350845 bytes, checksum: dd31928bd19312563101a08caea74d63 (MD5)
Previous issue date: 2014 / Resumo: A crescente disponibilidade de conteúdo multimídia é um desafio para a pesquisa em Recuperação de Informação. Usuários querem não apenas ter acesso aos documentos multimídia, mas também obter semântica destes documentos, de modo que a capacidade de encontrar um conteúdo específico em grandes coleções de documentos textuais e não textuais é fundamental. Nessas grandes escalas, sistemas de informação multimídia de recuperação devem contar com a capacidade de executar a busca por semelhança de forma eficiente. No entanto, documentos multimídia são muitas vezes representados por descritores multimídia representados por vetores de alta dimensionalidade, ou por outras representações complexas em espaços métricos. Fornecer a possibilidade de uma busca por similaridade eficiente para esse tipo de dados é extremamente desafiador. Neste projeto, vamos explorar uma das famílias mais citado de soluções para a busca de similaridade, o Hashing Sensível à Localidade (LSH - Locality-sensitive Hashing em inglês), que se baseia na criação de funções de hash que atribuem, com maior probabilidade, a mesma chave para os dados que são semelhantes. O LSH está disponível apenas para um punhado funções de distância, mas, quando disponíveis, verificou-se ser extremamente eficiente para arquiteturas com custo de acesso uniforme aos dados. A maioria das funções LSH existentes são restritas a espaços vetoriais. Propomos dois métodos novos para o LSH, generalizando-o para espaços métricos quaisquer utilizando particionamento métrico (centróides aleatórios e k-medoids). Apresentamos uma comparação com os métodos LSH bem estabelecidos em espaços vetoriais e com os últimos concorrentes novos métodos para espaços métricos. Desenvolvemos uma modelagem teórica do comportamento probalístico dos algoritmos propostos e demonstramos algumas relações e limitantes para a probabilidade de colisão de hash. Dentre os algoritmos propostos para generelizar LSH para espaços métricos, esse desenvolvimento teórico é novo. Embora o problema seja muito desafiador, nossos resultados demonstram que ela pode ser atacado com sucesso. Esta dissertação apresentará os desenvolvimentos do método, a formulação teórica e a discussão experimental dos métodos propostos / Abstract: The increasing availability of multimedia content poses a challenge for information retrieval researchers. Users want not only have access to multimedia documents, but also make sense of them --- the ability of finding specific content in extremely large collections of textual and non-textual documents is paramount. At such large scales, Multimedia Information Retrieval systems must rely on the ability to perform search by similarity efficiently. However, Multimedia Documents are often represented by high-dimensional feature vectors, or by other complex representations in metric spaces. Providing efficient similarity search for that kind of data is extremely challenging. In this project, we explore one of the most cited family of solutions for similarity search, the Locality-Sensitive Hashing (LSH), which is based upon the creation of hashing functions which assign, with higher probability, the same key for data that are similar. LSH is available only for a handful distance functions, but, where available, it has been found to be extremely efficient for architectures with uniform access cost to the data. Most existing LSH functions are restricted to vector spaces. We propose two novel LSH methods (VoronoiLSH and VoronoiPlex LSH) for generic metric spaces based on metric hyperplane partitioning (random centroids and K-medoids). We present a comparison with well-established LSH methods in vector spaces and with recent competing new methods for metric spaces. We develop a theoretical probabilistic modeling of the behavior of the proposed algorithms and show some relations and bounds for the probability of hash collision. Among the algorithms proposed for generalizing LSH for metric spaces, this theoretical development is new. Although the problem is very challenging, our results demonstrate that it can be successfully tackled. This dissertation will present the developments of the method, theoretical and experimental discussion and reasoning of the methods performance / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/258942 |
Date | 26 August 2018 |
Creators | Silva, Eliezer de Souza da, 1988- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Valle, Eduardo, 1978-, Júnior, Eduardo Alves do Valle, Traina, Agma Juci Machado, Attux, Romis Ribeiro de Faissol |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 64 f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds