Return to search

The Main Diagonal of a Permutation Matrix

By counting 1's in the "right half" of 2w consecutive rows, we locate the main diagonal of any doubly infinite permutation matrix with bandwidth w. Then the matrix can be correctly centered and factored into block-diagonal permutation matrices.
Part II of the paper discusses the same questions for the much larger class of band-dominated matrices. The main diagonal is determined by the Fredholm index of a singly infinite submatrix. Thus the main diagonal is determined "at infinity" in general, but from only 2w rows for banded permutations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19621
Date January 2011
CreatorsLindner, Marko, Strang, Gilbert
ContributorsMIT (Massachusetts Institute of Technology)
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds