This dissertation addresses the synthesis of oriented mesoporous ceramic films by evaporation induced self-assembly of surfactants and ceramic precursors in films dip coated from ethanol-rich sols. First, the kinetics of silica polycondensation in surfactant templated sol-gel films is studied both before and after deposition using infrared spectroscopy. These observations reveal an induction time (with minimal condensation rate) before curing begins in certain surfactant-templated silica films, which can be utilized to perform post-synthesis modification. This induction time is maximized at high humidity, and by long nonionic surfactant headgroups (rather than, for instance, a trimethylammonium headgroup). The second part of the dissertation addresses lattice Monte Carlo (MC) simulation of the effects of confinement on the 2D hexagonally close packed (HCP) phase formed by 60 vol% surfactant in a polar solvent. The effects of size and type of confining geometry (slit, cylindrical and spherical cavities) and of surface chemistry are simulated. The HCP mesophase orients orthogonal to chemically neutral surfaces which attract both head and tail of the surfactant equally. Novel mesophase geometries are simulated including radially oriented micelles, concentric helices, and concentric porous shells. Utilizing fundamental insights from the kinetics and MC studies, the third part of the dissertation describes the synthesis of silica films with orthogonally tilted HCP mesophase on chemically neutral surfaces. Crosslinking a random copolymer of polyethylene oxide (PEO)-polyproplyene oxide (PPO) on glass slides results in chemically neutral surfaces for the PEO-PPO-PEO triblock copolymer template (P123) used here. The orthogonal orientation of the HCP channels is confirmed using advanced x-ray scattering techniques and electron microscopy. The final part of the dissertation discusses applications of ceramic films with orthogonally tilted (ortho-) HCP mesophase. Silica membranes with ortho-HCP pores are prepared on porous alumina supports, and show permeability of ethanol orders of magnitude greater than films with parallel-oriented HCP channels. Size-selective filtration of gold nanoparticles confirms the absence of any nanoscale cracks in the membranes. For a second application, we prepare titania films with ortho-HCP mesopores. Careful crystallization of the films followed by spinning on an organic hole conducting polymer (P3HT) leads to active bulk heterojunction solar cells.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1310 |
Date | 01 January 2006 |
Creators | Koganti, Venkat Rao |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0016 seconds