Return to search

Role of independent component analysis in intelligent ECG signal processing

The Electrocardiogram (ECG) reflects the activities and the attributes of the human heart and reveals very important hidden information in its structure. The information is extracted by means of ECG signal analysis to gain insights that are very crucial in explaining and identifying various pathological conditions. The feature extraction process can be accomplished directly by an expert through, visual inspection of ECGs printed on paper or displayed on a screen. However, the complexity and the time taken for the ECG signals to be visually inspected and manually analysed means that it‟s a very tedious task thus yielding limited descriptions. In addition, a manual ECG analysis is always prone to errors: human oversights. Moreover ECG signal processing has become a prevalent and effective tool for research and clinical practices. A typical computer based ECG analysis system includes a signal preprocessing, beats detection and feature extraction stages, followed by classification. Automatic identification of arrhythmias from the ECG is one important biomedical application of pattern recognition. This thesis focuses on ECG signal processing using Independent Component Analysis (ICA), which has received increasing attention as a signal conditioning and feature extraction technique for biomedical application. Long term ECG monitoring is often required to reliably identify the arrhythmia. Motion induced artefacts are particularly common in ambulatory and Holter recordings, which are difficult to remove with conventional filters due to their similarity to the shape of ectopic xiii beats. Feature selection has always been an important step towards more accurate, reliable and speedy pattern recognition. Better feature spaces are also sought after in ECG pattern recognition applications. Two new algorithms are proposed, developed and validated in this thesis, one for removing non-trivial noises in ECGs using the ICA and the other deploys the ICA extracted features to improve recognition of arrhythmias. Firstly, independent component analysis has been studied and found effective in this PhD project to separate out motion induced artefacts in ECGs, the independent component corresponding to noise is then removed from the ECG according to kurtosis and correlation measurement. The second algorithm has been developed for ECG feature extraction, in which the independent component analysis has been used to obtain a set of features, or basis functions of the ECG signals generated hypothetically by different parts of the heart during the normal and arrhythmic cardiac cycle. ECGs are then classified based on the basis functions along with other time domain features. The selection of the appropriate feature set for classifier has been found important for better performance and quicker response. Artificial neural networks based pattern recognition engines are used to perform final classification to measure the performance of ICA extracted features and effectiveness of the ICA based artefacts reduction algorithm. The motion artefacts are effectively removed from the ECG signal which is shown by beat detection on noisy and cleaned ECG signals after ICA processing. Using the ICA extracted feature sets classification of ECG arrhythmia into eight classes with fewer independent components and very high classification accuracy is achieved.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:640596
Date January 2014
CreatorsSarfraz, M.
PublisherUniversity of Salford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://usir.salford.ac.uk/33200/

Page generated in 0.0049 seconds