Return to search

Divergent Roles of PI3K and Akt in Rapamycin-induced Cardioprotection against Ischemia-Reperfusion Injury

Coronary heart disease (CHD) is one of the leading causes of death every year with nearly three-fourths of all deaths caused by the disease. The challenge scientists are facing today is discovering new drugs to protect the heart against cellular damage caused by ischemia-reperfusion injury (I-R injury). Rapamycin is one such drug that has been shown to protect the heart against ischemia-induced cellular injury. Rapamycin(sirolimus) inhibits protein synthesis through inhibition of the mammalian target ofrapamycin (mTOR). This property of rapamycin has led to its current clinical applications in drug-eluting stents and in immunosuppresive treatment to organ transplant patients. The mechanism by which this drug protects against I-R injury is currently unknown. The goal of this study is to elucidate rapamycin's cardioprotective signaling pathway. We hypothesized that upregulation of Akt occurs possibly as part of a positive feedback mechanism following the inhibition of mTOR by rapamycin. Adult male ICRmice were treated with rapamycin (0.25 mg/kg, i.p.), or volume-matched DMSO (solvent for rapamycin), or rapamycin (0.25mg/kg, i.p.) plus wortmannin (WTN, 15µg/kg, i.p.),an inhibitor of phosphatidylinositol 3-kinase, or wortmannin alone (15µg/kg, i.p.). After 30 min of stabilization, the hearts were subjected to 20 minutes of global ischemia and 30 minutes of reperfusion in Langendorff model. In a separate series of experiments mice were either injected with DMSO or rapamycin for 30 minutes, 1 hour, and 2 hours before harvesting the hearts for Western blot analysis of levels of total or phosphorylated Akt at Ser473. Our results showed that rapamycin protected the heart as observed by a reductionin infarct size from 33.8 ± 2.0% in DMSO-treated hearts to 19.3 ± 4.1% in rapamycin-treated hearts; a 43% reduction. This infarct-limiting effect was completely blocked by wortmannin (29.3 ± 4.8%). However, Western blot analysis showed no change in the level of Akt phosphorylation after administration of rapamycin. Our current resultsfurther confirmed rapamycin as a potential cardio-therapeutic drug to limit infarct size,potentially through the PI3K signaling pathway. However, the exact signaling pathway of this protection still remains elusive.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2073
Date01 January 2007
CreatorsDesai, Shivani Kirit
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.003 seconds