Return to search

3D computational fluid dynamics study of a drying process in a can making industry

Yes / In the drying process of a can making industry, the drying efficiency of a thermal drying oven can be improved by adjusting the volumetric air flow rate of the blower. To maximize drying efficiency, an optimal flow rate is needed. Consequently, a three-dimensional computational fluid dynamics (CFD) is used to provide simulation according to the response of air velocity, air temperature and evaporated solvent concentration with respect to changes in volumetric air flow rate in the drying oven. An experimental study has been carried out to determine the evaporation rate of the solvent. To validate the models, the process data obtained from the CFD is compared with that obtained from actual data. In the accurate models, the simulation results demonstrate that the decrease in volumetric air flow rate provides no major discrepancy of the air velocity patterns in all dimensions and decreases the maximum temperature in the oven. Consequently, this decrease in volumetric air flow rate rapidly increases the evaporated solvent concentration in the beginning and then gradually decreases over the length of the oven. In addition, further reduction of the flow rate gives lower heat loss of the oven up to 83.67%. / The authors would like to thank The Thailand Research Fund (TRF) under The Royal Golden Jubilee Ph.D. Program (PHD/0158/2550), The Institutional Research Grant (The Thailand Research Fund) (IRG 5780014) and Chulalongkorn University (Contract No. RES_57_411_21_076) for financial support to this work.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/8917
Date05 August 2016
CreatorsTanthadiloke, S., Chankerd, W., Suwatthikul, A., Lipikanjanakul, P., Mujtaba, Iqbal M., Kittisupakorn, P.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, final draft paper
Rights© 2016 Elsevier B.V. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0017 seconds