Today we are collecting a large amount of tissue samples to store for future studies of different health conditions, in hopes that the focus in health care will shift from treatments to early detection and prevention, by the use of biomarkers. To make sure that the storing of tissue is done in a reliable way, where the molecular profile of the samples are preserved, we first need to characterise how these changes occur. In this thesis, data from mice brains were collected using MALDI imaging mass spectrometry (IMS) and an analysis pipeline for robust MALDI IMS data handling and evaluation was implemented. The finished pipeline contains two reduction algorithms, catching images with interesting intensity features, while taking the spatial information into account, along with a robust similarity measurement, for measuring the degree of co-localisation. It also includes a clustering algorithm built upon the similarity measurement and an amino acid mass comparer, iteratively generating combinations of amino acids for further mass comparisons with mass differences between cluster members. Availability: The source code is available at https://github.com/stephanieherman/thesis
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-275072 |
Date | January 2016 |
Creators | Herman, Stephanie |
Publisher | Uppsala universitet, Institutionen för biologisk grundutbildning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC X ; 15038 |
Page generated in 0.0018 seconds