Return to search

Experimental demonstration and improvement of chemical EOR techniques in heavy oils

Heavy oil resources are huge and are currently produced largely with steam-driven technology. The purpose of this research was to evaluate an alternative to steam flooding in heavy oils: chemical EOR. Acidic components abundant in heavy crude oils can be converted to soaps at high pH with alkali, reducing the interfacial tension (IFT) between oil and water to ultra-low levels. In an attempt to harness this property, engineers developed alkaline and alkaline-polymer (AP) flooding EOR processes, which met limited success. The primary problem with AP flooding was the soap is usually too hydrophobic, its optimum salinity is low and the ultra-low IFT salinity range narrow (Nelson 1983). Adding a hydrophilic co-surfactant to the process solved the problem, and is known as ASP flooding. AP floods also form persistent, unpredictable and often highly viscous emulsions, which result in high pressure drops and low injection rates. Addition of co-solvents such as a light alcohol (typically 1 wt %) improves the performance of AP floods; researchers at the University of Texas at Austin have coined the term ACP (Alkaline Co-solvent Polymer) for this new process. ACP has significant advantages relative to other chemical flooding modes to recover heavy oils. It is less costly than using surfactant, and has none of the design challenges associated with surfactant. It shows the benefit of nearly 100% displacement sweep efficiency in core floods when properly implemented, as heavy oils tend to produce significant IFT reducing soaps. The use of polymer for mobility control ensures good sweep efficiency is also achieved. Since heavy oils can be extremely viscous at reservoir temperature, moderate reservoir heating to reduce oil viscosity is beneficial. In a series of core flood experiments, moderately elevated temperatures (25-75°C) were used in evaluating ACP flooding in heavy oils. The experiments used only small amounts of inexpensive co-solvents while recovering >90% of remaining heavy oil in a core, without need for any surfactant. The most successful experiments showed that a small increase in temperature (25°) can have very positive impacts on core flood performance. These results are very encouraging for heavy oil recovery with chemical EOR. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26521
Date14 October 2014
CreatorsFortenberry, Robert Patton
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0018 seconds