Return to search

Assessing the ability of HEC-HMS rainfall-runoff model to simulate stream flow across Sweden

Computer modeling is the powerful tool for simulating nature’s behavior; however, still more efforts are need for reaching perfect simulation with computer models (especially in the hydrological field of study). In this Master’s thesis, the accuracy of the HEC-HMS computer model for long term rainfall-runoff simulation was evaluated across Sweden. Five different catchments from north to south of Sweden were selected and then simulation have done for 34 years of available data. Simulation was conducted using daily, monthly and yearly time scale resolutions. Results from the north to the south of Sweden were completely different. Simulated runoff and observed runoff in northern catchments followed the same pattern over different time scales but in the southern part of Sweden the results had different patterns in space and time. The best results with HEC-HMS were found in the northern catchments with steep main river slopes. In the southern catchments the model could not predict runoff in any realistic manner at any time and space scale. In total the HEC-HMS model cannot simulate the rainfall runoff for long periods of simulation across Sweden. This is especially true in southern parts of the country dominate with low elevation catchments. However, with regards to its ability for event-based simulation HEC-HMS could be a suitable tool to simulate flood event discharges that are needed for road or other hydraulic structures designs. But, this would require significant amounts of calibration and model development.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-143345
Date January 2017
CreatorsAlavimoghaddam, Mohammadreza
PublisherStockholms universitet, Institutionen för naturgeografi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds