Return to search

Computations in Galois Cohomology and Hecke Algebras

<p> We study two objects: an ideal of a Hecke algebra, and a pairing in Galois cohomology.</p> <p> Let h be the Hecke algebra of cusp forms of weight 2, level n, and a fixed Dirichlet character modulo n generated by all Hecke operators, where n is an odd prime p or a product of two distinct odd primes N and p. We study the Eisenstein I ideal of h. We wrote a computer
program to test whether Up - 1 generates this ideal, where Up is the pth Hecke operator in h. We found many cases of n and the character so that Up - 1 alone generates I. On the other hand, we found one example with N = 3 and p = 331 where Up - 1 does not generate I.</p> <p> Let K = Q(μn) be the nth cyclotomic field. Let S be the set of primes above p in K, and let G_K,S be the Galois group of the maximal extension of K unramified outside S. We study a pairing on cyclotomic p-units that arises from the cup product on H1(G_K,S, μp). This pairing takes values in a Gal(K/Q)-eigenspace of the p-part of the class group of K. Sharifi has conjectured that this pairing is surjective. We studied this pairing in detail by imposing linear relations on the possible pairing values. We discovered many values of n and the character such that these relations single out a unique nontrivial possibility for the pairing, up to a possibly zero scalar.</p> <p> Sharifi showed in [S2] that, under an assumption on Bernoulli numbers, the element Up - 1 generates the Eisenstein ideal I if and only if pairing with the single element p is surjective. In particular, in the instances for which we found a unique nontrivial possibility for the pairing, then if Up - 1 generates I, we know that the scalar up to
which it is determined cannot be zero.</p> / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21131
Date09 1900
CreatorsDavis, Tara C.
ContributorsSharifi, Romyar, Mathematics
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds