O modelo de Heisenberg destaca-se no estudo do magnetismo com origem em momentos magnéticos localizados. Semelhante ao bem conhecido modelo clássico de Ising, ele incorpora, no entanto, flutuações quânticas. Estamos interessados em sistemas antiferromagnéticos descritos pelo Hamiltoniano de Heisenberg com anisotropia de troca e que, eventualmente, possam apresentar magnetizações não-nulas. Neste trabalho, lidamos com sistemas não-homogêneos, apresentando impurezas e/ou sujeitos a condições de contorno abertas. Para tanto, utilizamos a Teoria do Funcional da Densidade, que proporciona uma metodologia de obtenção de resultados para um sistema não-homogêneo a partir dos resultados conhecidos do mesmo sistema quando homogêneo. Nosso trabalho resume-se a duas partes. Na primeira parte, trabalhamos inicialmente com um funcional, na aproximação ``local para o spin\'\'(LSA), advindo da Teoria de Ondas de Spin, válido para anisotropia de troca com simetria XXZ e magnetização do sistema nula. E na segunda, exploramos a possibilidade de construção de um funcional, na aproximação LSA, válido para anisotropia de troca mas com um adicional: válido para magnetizações não-nulas. Os resultados advindos dos funcionais são confrontados com resultados numericamente exatos obtidos de um programa em Fortran 90, que diagonaliza cadeias de spins na presença ou não de impurezas, para qualquer condição de contorno, descritas pelo modelo de Heisenberg com anisotropia de troca. / The Heisenberg Model is generally recognized in the study of electromagnetism with origin in localized magnetic moments. Similar to the well known classical Ising model, it incorporates, however, quantum flutuations. We are interested in antiferromagnetic systems described by the Heisenberg Hamiltonian with exchange anisotropy and, eventually, non-null magnetizations. In this work, we deal with non-homogeneous systems with impurities. For this, we use Density Functional Theory and the Local Spin Aproximation (LSA), which provide a methodology for obtaining results of a non-homogeneous system from known results of the same but homogeneous system. Initially, we work with a functional provided by Spin Wave Theory on the LSA approximation, valid for anisotropies with XXZ simmetry and null magnetization. After that, we deal with the possibility of building a functional on LSA approximation valid also for exchange anisotropy but with an additional: applicable for non-null magnetizations.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02072008-155051 |
Date | 30 May 2008 |
Creators | Guilherme Nery Prata |
Contributors | Valter Luiz Libero, Andre Luiz Malvezzi, Guilherme Matos Sipahi |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds