Given the complexity and functionality of todays software, task-specific, system-suggested help could be beneficial for users. Although system-suggested help assists users in completing their tasks quickly, user response to unsolicited advice from their applications has been lukewarm. One such problem is lack of knowledge of system-suggested help about the users expertise with the task they are currently doing. This thesis examines the possibility of improving system-suggested help by adding knowledge about user expertise into the help system and eventually designing an expertise-sensitive help system. An expertise-sensitive help system would detect user expertise dynamically and regularly so that systems could recommend help overtly to novices, subtly to average and poor users, and not at all to experts.<p>
This thesis makes several advances in this area through a series of four experiments. In the first experiment, we show that users respond differently to help interruptions depending on their expertise with a task. Having established that user response to helpful interruptions varies with expertise level, in the second experiment we create a four-level classifier of task expertise with an accuracy of 90%. To present helpful interruptions differently to novice, poor, and average users, we need to design three interrupting notifications that vary in their attentional draw. In experiment three, we investigate a number of options and choose three icons. Finally, in experiment four, we integrate the expertise model and three interrupting notifications into an expertise-sensitive system-suggested help program, and investigate the user response. Together, these four experiments show that users value helpful interruptions when their expertise with a task is low, and that an expertise-sensitive help system that presents helpful interruptions with attentional draw that matches user expertise is effective and valuable.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-03152010-120307 |
Date | 18 March 2010 |
Creators | Masarakal, Mangalagouri |
Contributors | Mandryk, Regan, Gutwin, Carl, Ludwig, Simone, Zhang, Chris |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-03152010-120307/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.002 seconds