Return to search

Negative Regulation of Cytokine Singalling in the Myeloid Lineage: Investigating the Role of CBL and SH2B1

Negative regulation of cytokine signalling is essential for maintaining hematopoietic homeostasis. We investigated the role of SH2B1 and CBL in the negative regulation of EPO and GM-CSF signaling, respectively. Erythropoiesis is driven by the cytokine erythropoietin (EPO), which mediates its signal by binding to its cognate receptor, the erythropoietin receptor (EPO-R). Murine knock-in studies have demonstrated EPO-R Tyr343 to play an important role in EPO mediated signalling. We have utilized a Cloning of Ligand Target (COLT) screen to identify the adaptor protein SH2B1 as an interactor of EPO-R pTyr343. We have demonstrated that SH2B1 binds to EPO-R via two mechanisms. The amino-terminus of SH2B1 and the membrane proximal region of EPO-R mediate SH2B1 constitutive binding to EPO-R. SH2B1 binds to EPO-R pTyr343 and pTyr 401 in an SH2 domain-dependent manner. SH2B1 displayed dose- and time- dependent Serine/Threonine phosphorylation in response to EPO stimulation. Knockdown of SH2B1 resulted in enhanced activation of Jak2 and EPO-R. These studies demonstrate SH2B1 as a novel negative regulator of EPO signalling.
Mutations in the linker region and the RING finger of CBL have been identified in a number of myeloid malignancies, including juvenile myelomonocytic leukemia. We investigated how linker region mutant, CBL-Y371H, and RING finger mutant, CBL-C384R lead to GM-CSF hypersensitivity. Expression of these CBL mutants in the human hematopoietic cell line, TF-1, showed enhanced stimulation induced phosphorylation of GM-CSFR βc. We also demonstrated that the loss of E3 ligase activity of these CBL mutants results in increased expression of JAK2 and LYN kinases. Assessment of the effects of CBL mutants on downstream signalling revealed enhanced phosphorylation of SHP2, CBL and S6. Dasatinib induced inhibition of SRC family kinases abolished the elevated phosphorylation of CBL mutants, and equalized the phosphorylation of GM-CSFR βc in the wild type and CBL mutant cells.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/35711
Date17 July 2013
CreatorsJavadi Javed, Mojib
ContributorsBarber, Dwayne
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds