Return to search

DESIGN OF CLASS F-BASED DOHERTY POWER AMPLIFIER FOR S-BAND APPLICATIONS

Modern RF and millimeter-wave communication links call for high-efficiency front end systems with high output power and high linearity to meet minimum transmission requirements. Advanced modulation techniques, such as orthogonal frequency-division multiplexing (OFDM) require a large power amplifier (PA) dynamic range due to the high peak-to-average power ratio (PAPR). This thesis provides the analysis, design, and experimental verification of a high-efficiency, high-linearity S-band Doherty power amplifier (DPA) based on the Class F PA. Traditional Class F PAs use harmonically tuned output matching networks to obtain up to 88.4% power-added efficiency (PAE) theoretically, however the amplifier experiences poor linearity performance due to switched mode operation, typically yielding less than 30dB C/I ratio [1]. The DPA overcomes this linearity limitation by using an auxiliary amplifier to boost output power when the amplifier is subject to a high input power due to its limited conduction cycle. The DPA also provides improved saturated output power back-off performance to maintain high PAE during operation.
The DPA presented in this thesis optimizes PAE while maintaining linearity by employing harmonically tuned Class F amplifier topology on a primary and an auxiliary amplifier. A Class F PA is first designed and fabricated to optimize output network linearity – this is followed by a DPA design based on the fabricated Class F PA. A GaN HEMT Class F PA and DPA operating at 2.2GHz are implemented with the PAs measuring 40% and 45% PAE respectively while maintaining a 30dB carrier-to-intermodulation (C/I) ratio on a two-tone test. The PAE is characterized at maximum 21dBm input power per tone and 20MHz tone spacing. When subject to a single 24dBm continuous wave input tone, the Class F PA and DPA output 37dBm and 35.5dBm respectively. The PAs presented in the thesis provide over 30dB C/I ratio up to 21dBm input tones while maintaining over 40% PAE suitable for base station applications.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4326
Date01 June 2023
CreatorsChang, Kyle
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0104 seconds