This thesis comprises a detailed work on the ketonization of aldehydes. The ketonization reaction joins two aldehyde molecules, with n carbon atoms each, to a ketone with 2n ¿ 1 carbon atoms. The reaction is involved, probably, in pyrolysis oil stabilization. The stabilized bio-oil product can be used as bio-fuel.
Herein, we studied different zirconium materials and cerium oxide as catalysts. Different zirconium oxide crystal phases were tested and zirconium species grafted on mesoporous silica together with cerium oxide samples with different crystal size. In the case of zirconium oxide, the best results were obtained for the monoclinic phase, providing a selectivity to the main product 7-tridecanone of 67% and a heptanal conversion of 90%. Using a commercial sample of cerium oxide, the catalytic results were further improved. The selectivity for the main ketone product reached almost 80% at complete conversion. The selectivity towards ketones with different chain lengths (including the main product) was 90%. Under steady-state conditions, the catalytic experiments showed that two aldehyde molecules were transformed into one ketone molecule, one carbon dioxide molecule and two hydrogen molecules. To balance the equation for this reaction, one water molecule has to be consumed to provide two hydrogen and one oxygen atoms.
The reaction mechanism was studied by means of cross-coupling experiments of aldehydes and acids with different chain length, cross ketonization of the aldol condensation product and an aldehyde with different chain length, kinetic and isotope studies with the aldehyde substrate deuterated at carbon atom one. All results indicated that the carboxylic acid was formed as intermediate by dehydrogenation of the aldehyde adsorbed on the metal oxide surface. In addition, the isotope study with the deuterated aldehyde showed that the intermediate is formed by hydride transfer from the aldehyde to the oxide surface, in the absence of any noble metal.
In both cases, for zirconium oxide as well as for cerium oxide, adding water to the reaction enhanced the selectivity towards the desired ketone. However, the way water behaves is different for both materials. Zirconium oxide possesses catalytic activity for the aldol condensation reaction and produces the water required for the oxidation process. In this case it is supposed that water shifts back the aldol equilibrium towards the aldehyde, which then reacts to the ketone. As a consequence, the isomerized aldol condensation product is slowly converted into the ketone increasing its selectivity. In contrast to zirconium oxide, cerium oxide is not an active catalyst for the aldol condensation and water is not abundant for the ketonization reaction. Therefore, adding water to the feed provides a reactant necessary for the reaction. These differences are also reflected in the rate equation and in the proposed kinetic model for each catalyst.
The ketone product mixture can be converted in a bio-fuel by hydrodeoxygenation. For doing so, a sustainable process was designed consisting of a cascade reaction of five subsequent steps using aldehydes as raw material to produce long chain alkanes. The hydrogen obtained during the aldehyde oxidation is supposed to be consumed during the ketone hydrodeoxygenation to produce aliphatic alkanes. The water necessary for aldehyde oxidation is recovered during ketone hydrodeoxygenation. When the reaction is carried out with heptanal, an aldehyde derived from biomass, the latter is transformed into a diesel fraction with almost 90% selectivity of alkanes. Catalytic results have shown that zirconium and cerium oxide possess a big potential to convert biomass derived aldehydes into bio-fuels in a very sustainable way. / En esta Tesis Doctoral se presenta un estudio detallado de la reacción de cetonización de aldehídos. En la cetonización se unen dos moléculas de aldehído con n átomos de carbono para formar una cetona con 2n-1 átomos de carbono.
Se estudiaron como catalizadores diversos materiales de circonio y el óxido de cerio. Se evaluó el óxido de circonio con diferentes fases cristalinas, circonio anclado sobre una sílice mesoporosa, y muestras de óxidos de cerio con diferente tamaño de cristal. En el caso del óxido de circonio se obtuvieron los mejores resultados con la fase monoclínica y se consiguió una selectividad a 7-tridecanona del 67% a una conversión de heptanal del 90%. Con una muestra comercial de óxido de cerio se consiguió mejorar estos resultados y se observó una selectividad alrededor del 80% para la cetona principal con conversión completa, y del 90% para el total de cetonas con diferente longitud de cadena. En ensayos con el catalizador en condiciones de equilibrio se observó que dos moléculas de aldehído deben consumir una molécula de agua para transformarse en una molécula de cetona, una molécula de dióxido de carbono y dos moléculas de hidrógeno.
El mecanismo de reacción se estudió a través de experimentos de cetonización cruzada entre aldehídos y ácidos con diferente longitud de cadena, cetonización cruzada entre el producto de condensación aldólica y un aldehído con otra longitud de cadena, estudios cinéticos y estudios isotópicos con el aldehído deuterado en la posición uno. Todos los resultados indican que el ácido carboxílico se forma como intermedio por deshidrogenación del aldehído adsorbido sobre la superficie del óxido metálico. Adicionalmente, el estudio isotópico con el aldehído deuterado mostró que este intermedio se forma por transferencia de un hidruro del aldehído a la superficie del óxido, en ausencia de un metal noble.
En ambos casos, con el óxido de circonio al igual que con el óxido de cerio, añadiendo agua a la alimentación de la reacción se mejora la selectividad a la cetona deseada. Sin embargo, la forma de actuación es diferente. Con el óxido de circonio, que presenta actividad catalítica para la reacción de condensación aldólica, el agua necesaria para la oxidación se produce en suficiente cantidad. Se supone que en este caso el agua revierte el equilibrio aldólico y hace accesible de nuevo el aldehído para reaccionar de manera irreversible a la cetona. De esta manera el producto de condensación se transforma poco a poco en cetona aumentando su selectividad. Al contrario, el óxido de cerio no tiene la capacidad de formar el producto de condensación aldólica y con éste el agua requerida para la reacción de cetonización. Por esto, la adición de agua a la alimentación abastece un sustrato necesario para la reacción y posibilita la misma. Estas diferencias también se reflejan en las velocidades de reacción y en el modelo cinético propuesto para cada material.
Los productos de reacción, las cetonas, se pueden convertir en bio-combustibles por hidrodesoxigenación. Para ello se diseñó un proceso sostenible y se llevó a cabo una reacción en cascada de cinco pasos a partir de aldehídos para producir alcanos de cadena larga, donde supuestamente el hidrógeno liberado en la oxidación del aldehído se consume en la hidrodesoxigenación de las cetonas producidas para obtener finalmente los alcanos lineales. Además el agua necesaria para la oxidación del aldehído se recupera en la hidrodesoxigenación de las cetonas. Cuando este proceso se realiza a partir del heptanal, un aldehído derivado de la biomasa, se obtiene un crudo de producto con un 90% de alcanos con un punto de ebullición en el rango del combustible diésel. Los resultados catalíticos mostraron que los catalizadores de óxido de circonio y de cerio, poseen un gran potencial para convertir de manera sostenible aldehídos derivados de la biomasa en bio / En aquesta tesi doctoral es presenta un estudi detallat de la reacció de cetonización d'aldehids. A la cetonización s'uneixen dues molècules d'aldehid amb n àtoms de carboni per formar una cetona amb 2n-1 àtoms de carboni.
Es van estudiar com a catalitzadors diversos materials de zirconi i l'òxid de ceri. Es va avaluar l'òxid de zirconi amb diferents fases cristal¿lines, zirconi ancorat sobre una sílice mesoporosa, i mostres d'òxids de ceri amb diferents mides de cristall. En el cas de l'òxid de zirconi es van obtenir els millors resultats amb la fase monoclínica i es va aconseguir una selectivitat a 7-tridecanona el 67% a una conversió de heptanal del 90%. Amb una mostra comercial nanoparticulada d'òxid de ceri es va aconseguir millorar aquests resultats i es va observar una selectivitat al voltant del 80% per a la cetona principal amb conversió completa, i del 90% per al total de cetones amb diferent longitud de cadena. En assaigs amb el catalitzador en condicions d'equilibri es va observar que dues molècules d'aldehid es transformen en una molècula de cetona, una molècula de diòxid de carboni i dues molècules d'hidrogen. A més, per ajustar l'equació s'ha de consumir una molècula d'aigua per a proveir dos àtoms d'hidrogen i un d'oxigen.
El mecanisme de reacció es va estudiar mitjançant experiments de cetonización creuada entre aldehids i àcids amb diferent longitud de cadena, cetonización creuada entre el producte de condensació aldòlica i un aldehid amb una altra longitud de cadena, estudis cinètics i estudis isotòpics amb l'aldehid deuterat en la posició un. Tots els resultats indiquen que l'àcid carboxílic es forma com a intermedi per deshidrogenació de l'aldehid adsorbit sobre la superfície de l'òxid metàl¿lic. Addicionalment, l'estudi isotòpic amb l'aldehid deuterat va mostrar que aquest intermedi es forma per transferència d'un hidrur de l'aldehid a la superfície de l'òxid, en absència d'un metall noble.
En ambdós casos, amb l'òxid de zirconi la mateixa manera que amb l'òxid de ceri, afegint aigua a l'alimentació de la reacció es millora la selectivitat a la cetona desitjada. No obstant això, la forma d'actuació és diferent. Amb l'òxid de zirconi, que presenta activitat catalítica per a la reacció de condensació aldòlica, l'aigua necessària per a l'oxidació es produeix en suficient quantitat. Se suposa que en aquest cas l'aigua reverteix l'equilibri aldòlico i fa accessible de nou l'aldehid per reaccionar de manera irreversible a la cetona. D'aquesta manera el producte de condensació es transforma poc a poc en cetona augmentant la seua selectivitat. Al contrari, l'òxid de ceri no té la capacitat de formar el producte de condensació aldòlica i amb aquest l'aigua requerida per a la reacció de cetonización. Per això, l'addició d'aigua a l'alimentació proveeix un substrat necessari per a la reacció i possibilita la mateixa. Aquestes diferències també es reflecteixen en les velocitats de reacció i en el model cinètic proposat per a cada material.
Els productes de reacció, les cetones, es poden convertir en bio-combustibles per hidrodesoxigenación. Per a això es va dissenyar un procés sostenible i es va dur a terme una reacció en cascada de cinc passos a partir d'aldehids per produir alcans de cadena llarga, on suposadament l'hidrogen alliberat en l'oxidació de l'aldehid es consumeix a la hidrodesoxigenación de les cetones produïdes per obtenir finalment els alcans lineals. A més l'aigua necessària per a l'oxidació de l'aldehid es recupera a la hidrodesoxigenación de les cetones. Quan aquest procés es realitza a partir de l'heptanal, un aldehid derivat de la biomassa, s'obté un cru de producte amb un 90% d'alcans amb un punt d'ebullició en el rang del combustible dièsel. Els resultats catalítics van mostrar que els catalitzadors d'òxid de zirconi i de ceri, posseeixen un gran potencial per convertir de manera sostenible aldehids / Orozco Arboleda, LM. (2017). Cetonización de aldehídos catalizada por óxido de circonio y de cerio: mecanismo de reacción, formación de hidrógeno y una posible aplicación para la transformación de biomasa [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/85977
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/85977 |
Date | 31 July 2017 |
Creators | Orozco Arboleda, Lina Marcela |
Contributors | Renz, Michael, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds